30 research outputs found

    Screening of a healthy newborn identifies three adult family members with symptomatic glutaric aciduria type I

    No full text
    We report three adult sibs (one female, two males) with symptomatic glutaric acidura type I, who were diagnosed after a low carnitine level was found by newborn screening in a healthy newborn of the women. All three adults had low plasma carnitine, elevated glutaric acid levels and pronounced 3-hydroxyglutaric aciduria. The diagnosis was confirmed by undetectable glutaryl-CoA dehydrogenase activity in lymphocytes and two pathogenic heterozygous mutations in the GCDH gene (c.1060A>G, c.1154C>T). These results reinforce the notion that abnormal metabolite levels in newborns may lead to the diagnosis of adult metabolic disease in the mother and potentially other family members

    Endothelium-derived hyperpolarizing factor-mediated renal vasodilatory response is impaired during acute and chronic hyperhomocysteinemia

    No full text
    BACKGROUND: Endothelial dysfunction is an early event in the development of vascular complications in hyperhomocysteinemia. Endothelial cells release a number of vasodilators, including NO and prostacyclin. Several lines of evidence have indicated the existence of a third vasodilator pathway, mediated by endothelium-derived hyperpolarizing factor (EDHF). EDHF is a major determinant of vascular tone in small resistance vessels. The influence of hyperhomocysteinemia on EDHF is unknown. The present in vivo study evaluates the integrity of the EDHF pathway in the renal microcirculation of rats with acute and chronic hyperhomocysteinemia. METHODS AND RESULTS: EDHF-mediated vasodilation was evaluated as the renal blood flow (RBF) response to intrarenal acetylcholine during systemic NO synthase and cyclooxygenase inhibition. Acute hyperhomocysteinemia induced by intravenous homocysteine did not affect EDHF-mediated vasodilation. In contrast, intravenous methionine with subsequent hyperhomocysteinemia impaired the EDHF-mediated RBF response. When the methionine infusion was preceded by adenosine periodate oxidized to prevent the cleavage of S-adenosylhomocysteine to homocysteine and adenosine, a similar impairment of EDHF was observed, but with normal homocysteine levels. Animals with chronic hyperhomocysteinemia induced by a high-methionine, low-B vitamin diet during 8 weeks had a severely depressed EDHF-mediated vasodilation compared with those on a standard diet. Endothelium-independent vasodilation to deta-NONOate and pinacidil was not affected in acute and chronic hyperhomocysteinemia, demonstrating intact vascular smooth muscle reactivity. CONCLUSIONS: EDHF-dependent responses are impaired in the kidney of hyperhomocysteinemic rats. Because EDHF is a major regulator of vascular function in small vessels, these findings have important implications for the development of microangiopathy in hyperhomocysteinemia

    Folic acid mitigated cardiac dysfunction by normalizing the levels of tissue inhibitor of metalloproteinase and homocysteine-metabolizing enzymes postmyocardial infarction in mice

    No full text
    Myocardial infarction (MI) results in significant metabolic derangement, causing accumulation of metabolic by product, such as homocysteine (Hcy). Hcy is a nonprotein amino acid generated during nucleic acid methylation and demethylation of methionine. Folic acid (FA) decreases Hcy levels by remethylating the Hcy to methionine, by 5-methylene tetrahydrofolate reductase (5-MTHFR). Although clinical trials were inconclusive regarding the role of Hcy in MI, in animal models, the levels of 5-MTHFR were decreased, and FA mitigated the MI injury. We hypothesized that FA mitigated MI-induced injury, in part, by mitigating cardiac remodeling during chronic heart failure. Thus, MI was induced in 12-wk-old male C57BL/J mice by ligating the left anterior descending artery, and FA (0.03 g/l in drinking water) was administered for 4 wk after the surgery. Cardiac function was assessed by echocardiography and by a Millar pressure-volume catheter. The levels of Hcy-metabolizing enzymes, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 5-MTHFR, were estimated by Western blot analyses. The results suggest that FA administered post-MI significantly improved cardiac ejection fraction and induced tissue inhibitor of metalloproteinase, CBS, CSE, and 5-MTHFR. We showed that FA supplementation resulted in significant improvement of myocardial function after MI. The study eluted the importance of homocysteine (Hcy) metabolism and FA supplementation in cardiovascular disease

    Does the interaction between maternal folate intake and the methylenetetrahydrofolate reductase polymorphisms affect the risk of cleft lip with or without cleft palate?

    No full text
    Item does not contain fulltextPericonceptional folic acid supplementation may reduce the risk of cleft lip with or without cleft palate (CL(P)). Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene reduce availability of 5-methyltetrahydrofolate, the predominant circulating form of folate. To determine the effect of MTHFR C677T and MTHFR A1298C genotypes and haplotypes on CL(P) risk and the interaction with maternal periconceptional dietary folate and folic acid supplement intake, the authors conducted a case-control triad study in the Netherlands (1998-2000) among 179 CL(P) and 204 control families. Infant and parental MTHFR C677T and MTHFR A1298C genotypes and haplotypes were not associated with CL(P) risk in the case-control and transmission disequilibrium test analyses. Mothers carrying the MTHFR 677TT genotype and who either did not use folic acid supplements periconceptionally or had a low dietary folate intake, or both, had an increased risk of delivering a CL(P) child (odds ratio (OR) = 5.9, 95% confidence interval (CI): 1.1, 30.9; OR = 2.8, 95% CI: 0.7, 10.5; OR = 10.0, 95% CI: 1.3, 79.1, respectively). No supplement use, low dietary folate intake, and maternal MTHFR 1298CC genotype increased the risk of CL(P) offspring almost sevenfold (OR = 6.5, 95% CI: 1.4, 30.2). Thus, the detrimental effect of low periconceptional folate intake on the risk of giving birth to a CL(P) child was more pronounced in mothers with the MTHFR 677TT or MTHFR 1298CC genotype

    Identification of Pseudomonas aeruginosa and Aspergillus fumigatus mono- and co-cultures based on volatile biomarker combinations

    No full text
    Volatile organic compound (VOC) analysis in exhaled breath is proposed as a non-invasive method to detect respiratory infections in cystic fibrosis patients. Since polymicrobial infections are common, we assessed whether we could distinguish Pseudomonas aeruginosa and Aspergillus fumigatus mono-and co-cultures using the VOC emissions. We took headspace samples of P. aeruginosa, A. fumigatus and co-cultures at 16, 24 and 48 h after inoculation, in which VOCs were identified by thermal desorption combined with gas chromatography - mass spectrometry. Using multivariate analysis by Partial Least Squares Discriminant Analysis we found distinct VOC biomarker combinations for mono-and co-cultures at each sampling time point, showing that there is an interaction between the two pathogens, with P. aeruginosa dominating the co-culture at 48 h. Furthermore, time-independent VOC biomarker combinations were also obtained to predict correct identification of P. aeruginosa and A. fumigatus in mono-culture and in co-culture. This study shows that the VOC combinations in P. aeruginosa and A. fumigatus co-microbial environment are different from those released by these pathogens in mono-culture. Using advanced data analysis techniques such as PLS-DA, time-independent pathogen specific biomarker combinations can be generated that may help to detect mixed respiratory infections in exhaled breath of cystic fibrosis patients
    corecore