17 research outputs found

    Avaliação de atividade fungitóxica e isolamento de aloaromadendrano - 4α, 10 β - diol em Hypericum cordatum

    No full text
    Hypericum cordatum é uma espécie do cerrado que foi selecionada em triagem de plantas com atividade fungitóxica. O objetivo do presente trabalho foi isolar e identificar compostos com atividade antifúngica em extratos de folhas em diclorometano. O pó das folhas das plantas foi submetido à extração exaustiva com éter de petróleo e diclorometano. O extrato em diclorometano, e as frações ativas, foram submetidos à fracionamentos biomonitorados em coluna de Sephadex LH-20, respectivamente, com os eluentes clorofórmio:metanol (1:1) e com um gradiente de hexano:diclorometano (1:4); diclorometano:acetona (3:2 e 1:4), metanol, e água. As frações que mostraram atividade foram submetidas à cromatografia em camada delgada preparativa de sílica gel GF254, sendo que o material de maior massa foi analisado em CLAE semipreparativa. A fração ativa foi analisada por RMN de ¹H, tendo sido identificado o aloaromadendrano - 4α -10β - diol como componente principal da fração. Conclui-se, portanto, que este é um dos compostos responsáveis pela atividade fungitóxica de Hypericum cordatum

    Antinociceptive and anti-inflammatory effects of Lantana camara L. extract in mice

    No full text
    ABSTRACT:he Lantana camara L. belongs to the family Verbenaceae, which contains several active compounds in leaves and roots and which are reported to have medicinal and insecticidal properties. Studies of plants within the same family show the existence of anti-inflammatory activity in paw edema induced by carrageenan, serotonin and histamine and analgesic activity in the acetic acid writhing and tail-flick tests. The present study investigated whether the L. camara extract (ACE) also exerts these effects. The ACE toxicity was studied in male mice, and the percentage of mortality recorded 7 days after treatment was assessed. The ACE was evaluated as an antinociceptive agent in the hot plate, tail-flick and acetic acid writhing tests at a nontoxic dose of 1.0 g/Kg. The results showed that 1.5 g/Kg of ACE was not able to cause death, and doses of 3.0 and 4.0 g/Kg caused 50% and 60% death, respectively, in male mice. In all of the antinociceptive tests, 1 g/Kg of ACE markedly reduced responses to pain. Our findings suggest that ACE may have active anti-inflammatory and antinociceptive properties in much smaller doses than toxic

    Antifungal And Cytotoxic 2-acylcyclohexane-1,3-diones From Peperomia Alata And P. Trineura

    No full text
    Bioactivity-guided fractionation of the separate CH2Cl 2 extracts from the aerial parts of Peperomia alata and P. trineura yielded seven polyketides: alatanone A [3-hydroxy-2-(5′-phenylpent- 4′E-enoyl)cyclohex-2-en-1-one, 1a] and alatanone B [3-hydroxy-2-(3′- phenyl-6′-methylenedioxypropanoyl)cyclohex-2-en-1-one, 2a] from P. alata and trineurone A [3-hydroxy-2-(11′-phenylundec-10′E-enoyl)cyclohex- 2-en-1-one, 1b], trineurone B [3-hydroxy-2-(15′-phenyl-18′- methylenedioxypentadecanoyl)cyclohex-2-en-1-one, 2b], trineurone C [3-hydroxy-2-(17′-phenyl-20′-methylenedioxyheptadecanoyl) cyclohex-2-en-1-one, 2c], trineurone D [3-hydroxy-2-(hexadec-10′Z-enoyl) cyclohex-2-en-1-one, 3a], and trineurone E [(6R)-(+)-3,6-dihydroxy-2-(hexadec- 10′Z-enoyl)cyclohex-2-en-1-one, 3b] from P. trineura. The isolated compounds were evaluated for antifungal activity against Cladosporium cladosporioides and C. sphaeospermum and for cytotoxicity against the K562 and Nalm-6 leukemia cell lines. © 2014 The American Chemical Society and American Society of Pharmacognosy.77613771382Jaramillo, M.A., Manos, P.S., Zimmer, E.A., (2004) Int. J. Plant Sci., 165, pp. 403-416Wanke, S., Samain, M.S., Vanderschaeve, L., Mathieu, G., Goetghebeur, P., Neinhuis, C., (2006) Plant Biol., 8, pp. 93-102Salazar, K.J.M., Delgado, P.G.E., Luncor, L.R., Young, M.C.M., Kato, M.J., (2005) Phytochemistry, 66, pp. 573-579Seeram, N.P., Jacobs, H., McLean, S., Reynolds, W.F., (1998) Phytochemistry, 49, pp. 1389-1391Tanaka, T., Asai, F., Linuma, M., (1998) Phytochemistry, 49, pp. 229-232Mbah, J.A., Tchuendem, M.H.K., Tane, P., Sterner, O., (2002) Phytochemistry, 60, pp. 799-801Bayma, J.C., Arruda, M.S.P., Müller, A.H., Arruda, A.C., Canto, W.C., (2000) Phytochemistry, 55, pp. 779-782Govindachari, T.R., Kumari, G.N.K., Partho, P.D., (1998) Phytochemistry, 49, pp. 2129-2131Monache, F.D., Compagnone, R.S., (1996) Phytochemistry, 43, pp. 1097-1098Xu, S., Li, N., Ning, M.M., Zhou, C.H., Yang, Q.R., Wang, M.W., (2006) J. Nat. Prod., 69, pp. 247-250Wu, J., Li, N., Hasegawa, T., Sakai, J., Kakuta, S., Tang, W., Oka, S., Ando, M., (2005) J. Nat. Prod., 68, pp. 1656-1660Mahiou, V., Roblot, F., Hocquemiller, R., Cave, A., Rojas Arias, A., Inchausti, A., Yaluff, G., Fournet, A., (1996) J. Nat. Prod., 59, pp. 694-697Soares, M.G., Felippe, A.P.V., Guimarães, E.F., Kato, M.J., Ellena, J., Doriguetto, A.C., (2006) J. Braz. Chem. Soc., 17, pp. 1205-1210Li, N., Wu, J.L., Hasegawa, T., Sakai, J., Bai, L.M., Wang, L.Y., Kakuta, S., Ando, M., (2007) J. Nat. Prod., 70, pp. 998-1001Lago, J.H.G., Oliveira, A., Guimarães, E.F., Kato, M.J., (2007) J. Braz. Chem. Soc., 18, pp. 638-642Kato, M.J., Yoshida, M., Gottlieb, O.R., (1990) Phytochemistry, 29, pp. 1799-1810Nemoto, T., Masao, S., Kuwahara, Y., Takahisa, S., (1987) Agric. Biol. Chem., 51, pp. 1805-1810Mudd, A., (1983) J. Chem. Soc., 1, pp. 2161-2164Kuwahara, Y., Nemoto, T., Shibuya, M., Matsura, H., Shiraiwa, Y., (1983) Agric. Biol. Chem., 47, pp. 1929-1931Li, N., Hasegawa, T., Sakai, J.-I., Kakuta, S., Tang, W., Oka, S., Kiuchi, M., Ando, M., (2005) J. Nat. Prod., 68, pp. 1656-1660Denny, C., Zacharias, M.E., Ruiz, A.L.T.G., Amaral, M.C.E., Bittrich, V., Kohn, L.K., Sousa, I.M.O., Foglio, M.A., (2008) Phytother. Res., 22, pp. 127-130Wang, Q.-W., Yu, D.-H., Lin, M.-G., Zhao, M., Zhu, W.-J., Lu, Q., Li, G.-X., Yang, G.-H., (2012) Molecules, 17, pp. 4474-4483Moreira, D.L., Souza, P.O., Kaplan, M.A.C., Guimarães, E.F., (1999) Acta Hortic., 500, pp. 65-69Haan, J.W.D., Vendeven, L.J., (1973) Org. Magn. Reson., 5, pp. 147-153Azevedo, N.R., Santos, S.C., Miranda, E.G., Ferri, P.H., (1997) Phytochemistry, 46, pp. 1375-1377Cheng, M.J., Lee, S.J., Chang, Y.Y., Wu, S.H., Tsai, I.L., Jayaprakasam, B., Chen, I.S., (2003) Phytochemistry, 63, pp. 603-608Zaitsev, V.G., Mikhal'Chuk, A.L., (2001) Chirality, 13, pp. 488-492Homans, A.L., Fuchs, A., (1970) J. Chromatogr. A, 51, pp. 327-329Koeffler, H.P., Golde, D.W., (1980) Blood, 56, pp. 344-350Hurwitz, R., Hozier, J., Lebien, T., Minowada, J., Gajlpeczalska, K., Kubonishi, I., Kersey, J., (1979) Int. J. Cancer, 23, pp. 174-18

    Synthetic and biological studies on a cyclopolypeptide of plant origin

    No full text
    Objective: A natural cyclic peptide previously isolated from Citrus medica was synthesized by coupling of tetrapeptide units Boc-Leu-Pro-Trp-Leu-OMe and Boc-Ile-Ala-Ala-Gly-OMe after proper deprotection at carboxyl and amino terminals followed by cyclization of linear octapeptide segment. Methods: Solution phase technique was adopted for the synthesis of cyclooctapeptide—sarcodactylamide. Required tetrapeptide units were prepared by coupling of Boc-protected dipeptides viz. Boc-Leu-Pro-OH and Boc-Ile-Ala-OH with respective dipeptide methyl esters Trp-Leu-OMe and Ala-Gly-OMe. Cyclization of linear octapeptide unit was done by p-nitrophenyl ester method. The structure of synthesized cyclopolypeptide was elucidated by FTIR, 1H NMR, 13C NMR, FABMS spectral data and elemental analysis. The newly synthesized peptide was evaluated for different pharmacological activities including antimicrobial, anthelmintic and cytotoxic activities. Results: Synthesis of sarcodactylamide was accomplished with >78% yield utilizing dicyclohexylcarbodiimide (DCC) as coupling agent. Newly synthesized peptide possessed potent cytotoxic activity against Dalton’s lymphoma ascites (DLA) and Ehrlich’s ascites carcinoma (EAC) cell lines, in addition to moderate anthelmintic activity against earthworms Megascoplex konkanensis, Pontoscotex corethruses and Eudrilus sp. Moreover, cyclopolypeptide displayed good antimicrobial activity against pathogenic fungi Candida albicans and Gram-negative bacteria Pseudomonas aeruginosa, in comparison to standard drugs griseofulvin and ciprofloxacin. Conclusion: Solution phase technique employing DCC and triethylamine (TEA) as base proved to be effective for the synthesis of natural cyclooctapeptide. N-methyl morpholine (NMM) was found to be a better base for the cyclization of linear octapeptide unit in comparison to TEA and pyridine
    corecore