195 research outputs found

    Evaluation of water cooled supersonic temperature and pressure probes for application to 2000 F flows

    Get PDF
    The development of water cooled supersonic probes used to study high temperature jet plumes is addressed. These probes are: total pressure, static pressure, and total temperature. The motivation for these experiments is the determination of high temperature supersonic jet mean flow properties. A 3.54 inch exit diameter water cooled nozzle was used in the tests. It is designed for exit Mach 2 at 2000 F exit total temperature. Tests were conducted using water cooled probes capable of operating in Mach 2 flow, up to 2000 F total temperature. Of the two designs tested, an annular cooling method was chosen as superior. Data at the jet exit planes, and along the jet centerline, were obtained for total temperatures of 900 F, 1500 F, and 2000 F, for each of the probes. The data obtained from the total and static pressure probes are consistent with prior low temperature results. However, the data obtained from the total temperature probe was affected by the water coolant. The total temperature probe was tested up to 2000 F with, and without, the cooling system turned on to better understand the heat transfer process at the thermocouple bead. The rate of heat transfer across the thermocouple bead was greater when the coolant was turned on than when the coolant was turned off. This accounted for the lower temperature measurement by the cooled probe. The velocity and Mach number at the exit plane and centerline locations were determined from the Rayleigh-Pitot tube formula

    Relaxor Ferroelectric Oxides: Concept to Applications

    Get PDF
    Ferroelectric ceramic is one of the most important functional materials, which has great importance in modern technologies. A ferroelectric ceramic simultaneously exhibits dielectric, piezoelectric, ferroelectric, and pyroelectric properties. The inherent ferroelectric properties are directly related to long-range electric dipoles arrangement in the ferroelectric domains and its response to external stimuli. However, the interruption of the long-range ordering of dipoles leads to the formation of a special class of material is known as relaxor ferroelectric. It shows quite different physical properties as compared to ferroelectric (normal ferroelectric). The origin and design of relaxor ferroelectric are quite interesting for fundamental perspective along with device applications. Therefore, the origin of relaxor ferroelectric along with its fundamental understanding for possible future applications, have been explained briefly in the present chapter

    Postnatal development of depth-dependent collagen density in ovine articular cartilage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the functions of adult AC. Collagen is the most abundant solid component and it affects the mechanical behaviour of AC. The current objective is to quantify the postnatal development of depth-dependent collagen density in sheep (<it>Ovis aries</it>) AC between birth and maturity. We use Fourier transform infra-red micro-spectroscopy to investigate collagen density in 48 sheep divided over ten sample points between birth (stillborn) and maturity (72 weeks). In each animal, we investigate six anatomical sites (caudal, distal and rostral locations at the medial and lateral side of the joint) in the distal metacarpus of a fore leg and a hind leg.</p> <p>Results</p> <p>Collagen density increases from birth to maturity up to our last sample point (72 weeks). Collagen density increases at the articular surface from 0.23 g/ml ± 0.06 g/ml (mean ± s.d., <it>n </it>= 48) at 0 weeks to 0.51 g/ml ± 0.10 g/ml (<it>n </it>= 46) at 72 weeks. Maximum collagen density in the deeper cartilage increases from 0.39 g/ml ± 0.08 g/ml (<it>n </it>= 48) at 0 weeks to 0.91 g/ml ± 0.13 g/ml (<it>n </it>= 46) at 72 weeks. Most collagen density profiles at 0 weeks (85%) show a valley, indicating a minimum, in collagen density near the articular surface. At 72 weeks, only 17% of the collagen density profiles show a valley in collagen density near the articular surface. The fraction of profiles with this valley stabilises at 36 weeks.</p> <p>Conclusions</p> <p>Collagen density in articular cartilage increases in postnatal life with depth-dependent variation, and does not stabilize up to 72 weeks, the last sample point in our study. We find strong evidence for a valley in collagen densities near the articular surface that is present in the youngest animals, but that has disappeared in the oldest animals. We discuss that the retardance valley (as seen with polarised light microscopy) in perinatal animals reflects a decrease in collagen density, as well as a decrease in collagen fibril anisotropy.</p

    A Convolutional Attention Based Deep Network Solution for UAV Network Attack Recognition over Fading Channels and Interference

    Full text link
    When users exchange data with Unmanned Aerial vehicles - (UAVs) over air-to-ground (A2G) wireless communication networks, they expose the link to attacks that could increase packet loss and might disrupt connectivity. For example, in emergency deliveries, losing control information (i.e data related to the UAV control communication) might result in accidents that cause UAV destruction and damage to buildings or other elements in a city. To prevent these problems, these issues must be addressed in 5G and 6G scenarios. This research offers a deep learning (DL) approach for detecting attacks in UAVs equipped with orthogonal frequency division multiplexing (OFDM) receivers on Clustered Delay Line (CDL) channels in highly complex scenarios involving authenticated terrestrial users, as well as attackers in unknown locations. We use the two observable parameters available in 5G UAV connections: the Received Signal Strength Indicator (RSSI) and the Signal to Interference plus Noise Ratio (SINR). The prospective algorithm is generalizable regarding attack identification, which does not occur during training. Further, it can identify all the attackers in the environment with 20 terrestrial users. A deeper investigation into the timing requirements for recognizing attacks show that after training, the minimum time necessary after the attack begins is 100 ms, and the minimum attack power is 2 dBm, which is the same power that the authenticated UAV uses. Our algorithm also detects moving attackers from a distance of 500 m.Comment: 6 pages, 6 figure

    The influence of English colonization on culture of Australians

    Get PDF
    Several lignite samples were collected from boreholes of the Amynteo opencast lignite mine, northern Greece. Organic geochemical characteristics were investigated with the help of various analytical techniques, comprising Gas Chromatography (GC) and Gas-chromatography-Mass Spectrometry (GC-MS), Fourier Transform Infrared Spectroscopy (FTIR), solid-state Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopy, petrographical measurements as well as determination of bulk parameters. In the low rank (Rr = 0.21%) Amynteo lignites, huminite is the most abundant maceral group, inertinite has relatively low percentages and liptinite concentrations are rather high. Carbon Preference Index (CPI) reveals the predominance of odd-numbered, long-chained aliphatic hydro-carbons, which is related to a higher terrestrial plant input. The Pr/Ph ratio suggests that reducing conditions were persistent during peatification. Gymnosperm biomarkers such as isoprimarane, abietane, phyllocladane and sandaracopimarane, as well as angiosperm indicators (lupane) and hopanoid compounds with bacterial origin were identified. Analyses of the aromatic fractions revealed the presence of naphthalene, alkyl benzenes and phenols, pyrene, cadalene, cadinane, fluoranthene and dibenzofurane. Based on the FTIR analysis, aliphatic and oxygen containing structures were prevailed over the aromatic moieties. The intensity of the mineral bands was preferentially increased in the FTIR spectra of insoluble material. According to NMR analysis, the aliphatic carbons (0-50 ppm) have higher proportions comparing to aromatic carbons (100-160 ppm). The aromaticity fraction is low (fa = 0.32), as expected for these low rank coals. The presence of free organic radicals and Fe3+ and Mn2+ paramagnetic ions was revealed by EPR. In summary, the combined application of complementary analytical techniques allowed a deep inside into the geochemical characteristics of Amynteo lignites
    corecore