34 research outputs found

    Quantum Stabilizer Codes and Classical Linear Codes

    Full text link
    We show that within any quantum stabilizer code there lurks a classical binary linear code with similar error-correcting capabilities, thereby demonstrating new connections between quantum codes and classical codes. Using this result -- which applies to degenerate as well as nondegenerate codes -- previously established necessary conditions for classical linear codes can be easily translated into necessary conditions for quantum stabilizer codes. Examples of specific consequences are: for a quantum channel subject to a delta-fraction of errors, the best asymptotic capacity attainable by any stabilizer code cannot exceed H(1/2 + sqrt(2*delta*(1-2*delta))); and, for the depolarizing channel with fidelity parameter delta, the best asymptotic capacity attainable by any stabilizer code cannot exceed 1-H(delta).Comment: 17 pages, ReVTeX, with two figure

    Efficient Computations of Encodings for Quantum Error Correction

    Full text link
    We show how, given any set of generators of the stabilizer of a quantum code, an efficient gate array that computes the codewords can be constructed. For an n-qubit code whose stabilizer has d generators, the resulting gate array consists of O(n d) operations, and converts k-qubit data (where k = n - d) into n-qubit codewords.Comment: 16 pages, REVTeX, 3 figures within the tex

    Correcting the effects of spontaneous emission on cold trapped ions

    Get PDF
    We propose two quantum error correction schemes which increase the maximum storage time for qubits in a system of cold trapped ions, using a minimal number of ancillary qubits. Both schemes consider only the errors introduced by the decoherence due to spontaneous emission from the upper levels of the ions. Continuous monitoring of the ion fluorescence is used in conjunction with selective coherent feedback to eliminate these errors immediately following spontaneous emission events, and the conditional time evolution between quantum jumps is removed by symmetrizing the quantum codewords.Comment: 19 pages; 2 figures; RevTex; The quantum codewords are extended to achieve invariance under the conditional time evolution between jump

    Entanglement required in achieving entanglement-assisted channel capacities

    Full text link
    Entanglement shared between the two ends of a quantum communication channel has been shown to be a useful resource in increasing both the quantum and classical capacities for these channels. The entanglement-assisted capacities were derived assuming an unlimited amount of shared entanglement per channel use. In this paper, bounds are derived on the minimum amount of entanglement required per use of a channel, in order to asymptotically achieve the capacity. This is achieved by introducing a class of entanglement-assisted quantum codes. Codes for classes of qubit channels are shown to achieve the quantum entanglement-assisted channel capacity when an amount of shared entanglement per channel given by, E = 1 - Q_E, is provided. It is also shown that for very noisy channels, as the capacities become small, the amount of required entanglement converges for the classical and quantum capacities.Comment: 9 pages, 2 figures, RevTex

    Heating and decoherence suppression using decoupling techniques

    Get PDF
    We study the application of decoupling techniques to the case of a damped vibrational mode of a chain of trapped ions, which can be used as a quantum bus in linear ion trap quantum computers. We show that vibrational heating could be efficiently suppressed using appropriate ``parity kicks''. We also show that vibrational decoherence can be suppressed by this decoupling procedure, even though this is generally more difficult because the rate at which the parity kicks have to applied increases with the effective bath temperature.Comment: 13 pages, 5 figures. Typos corrected, references adde

    Basic concepts in quantum computation

    Get PDF
    Section headings: 1 Qubits, gates and networks 2 Quantum arithmetic and function evaluations 3 Algorithms and their complexity 4 From interferometers to computers 5 The first quantum algorithms 6 Quantum search 7 Optimal phase estimation 8 Periodicity and quantum factoring 9 Cryptography 10 Conditional quantum dynamics 11 Decoherence and recoherence 12 Concluding remarksComment: 37 pages, lectures given at les Houches Summer School on "Coherent Matter Waves", July-August 199

    Resonant cancellation of off-resonant effects in a multilevel qubit

    Full text link
    Off-resonant effects are a significant source of error in quantum computation. This paper presents a group theoretic proof that off-resonant transitions to the higher levels of a multilevel qubit can be completely prevented in principle. This result can be generalized to prevent unwanted transitions due to qubit-qubit interactions. A simple scheme exploiting dynamic pulse control techniques is presented that can cancel transitions to higher states to arbitrary accuracy.Comment: 4 pages, Revtex, submitted for publicatio

    Topological defects: A problem for cyclic universes?

    Full text link
    We study the behaviour of cosmic string networks in contracting universes, and discuss some of their possible consequences. We note that there is a fundamental time asymmetry between defect network evolution for an expanding universe and a contracting universe. A string network with negligible loop production and small-scale structure will asymptotically behave during the collapse phase as a radiation fluid. In realistic networks these two effects are important, making this solution only approximate. We derive new scaling solutions describing this effect, and test them against high-resolution numerical simulations. A string network in a contracting universe, together with the gravitational radiation background it has generated, can significantly affect the dynamics of the universe both locally and globally. The network can be an important source of radiation, entropy and inhomogeneity. We discuss the possible implications of these findings for bouncing and cyclic cosmological models.Comment: 11 RevTeX 4 pages, 6 figures; version to appear in Phys. Rev.

    Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation

    Get PDF
    A recently developed theory for eliminating decoherence and design constraints in quantum computers, ``encoded recoupling and decoupling'', is shown to be fully compatible with a promising proposal for an architecture enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature 417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions at a time. The encoding offers continuous protection against collective dephasing. Decoupling pulses, that are also implemented using the SM scheme directly to the encoded qubits, are capable of further reducing various other sources of qubit decoherence, such as due to differential dephasing and due to decohered vibrational modes. The feasibility of using the relatively slow SM pulses in a decoupling scheme quenching the latter source of decoherence follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure

    Decoherence control in microwave cavities

    Full text link
    We present a scheme able to protect the quantum states of a cavity mode against the decohering effects of photon loss. The scheme preserves quantum states with a definite parity, and improves previous proposals for decoherence control in cavities. It is implemented by sending single atoms, one by one, through the cavity. The atomic state gets first correlated to the photon number parity. The wrong parity results in an atom in the upper state. The atom in this state is then used to inject a photon in the mode via adiabatic transfer, correcting the field parity. By solving numerically the exact master equation of the system, we show that the protection of simple quantum states could be experimentally demonstrated using presently available experimental apparatus.Comment: 13 pages, RevTeX, 8 figure
    corecore