Abstract

Entanglement shared between the two ends of a quantum communication channel has been shown to be a useful resource in increasing both the quantum and classical capacities for these channels. The entanglement-assisted capacities were derived assuming an unlimited amount of shared entanglement per channel use. In this paper, bounds are derived on the minimum amount of entanglement required per use of a channel, in order to asymptotically achieve the capacity. This is achieved by introducing a class of entanglement-assisted quantum codes. Codes for classes of qubit channels are shown to achieve the quantum entanglement-assisted channel capacity when an amount of shared entanglement per channel given by, E = 1 - Q_E, is provided. It is also shown that for very noisy channels, as the capacities become small, the amount of required entanglement converges for the classical and quantum capacities.Comment: 9 pages, 2 figures, RevTex

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019