417 research outputs found

    Analysis of storage stability of intermediate moisture foods

    Get PDF
    Analysis of storage stability of intermediate moisture foods for space flight feeding with tables of foods and types of manufactur

    Mechanisms of deterioration of intermediate moisture food systems

    Get PDF
    A study of shelf stability in intermediate moisture foods was made. Major efforts were made to control lipid oxidation and nonenzymatic browning. In order to determine means of preventing these reactions, model systems were developed having the same water activity content relationship of intermediate moisture foods. Models were based on a cellulose-lipid and protein-lipid system with glycerol added as the humectant. Experiments with both systems indicate that lipid oxidation is promoted significantly in the intermediate moisture range. The effect appeared to be related to increased mobility of either reactants or catalysts, since when the amount of water in the system reached a level where capillary condensation occurred and thus free water was present, the rates of oxidation increased. With added glycerol, which is water soluble and thus increases the amount of mobile phase, the increase in oxidation rate occurs at a lower relative humidity. The rates of oxidation were maximized at 61% RH and decreased again at 75% RH probably due to dilution. No significant non-enzymatic browning occurred in the protein-lipid systems. Prevention of oxidation by the use of metal chelating agents was enhanced in the cellulose system, whereas, with protein present, the lipid soluble chain terminating antioxidants (such as BHA) worked equally as well. Preliminary studies of foods adjusted to the intermediate moisture range bear out the results of oxidation in model systems. It can be concluded that for most fat containing intermediate moisture foods, rancidity will be the reaction most limiting stability

    Storage Stability and Improvement of Intermediate Moisture Foods

    Get PDF
    Shelf life tests are used to estimate the rate of nonenzymatic browning; however, controlling the reducing sugar levels below 23:1 molar ratio to amines, slows the rate. In addition, liquid glycols surpress browning. The protozoan Tetrahymena pyriformis W can be used to estimate nutrition losses during browning. At high temperatures (80 to 120 C) used in processing intermediate moisture foods (IMF), vitamin C destruction shifts to a zero order mechanism. BHA and BHT are the most effective antioxidants against rancidity. In shelf life testing however, 45 C should be the maximum temperature used. Water binding agents are studied. The five isotherms of thirteen humectants were determined. The results show that neither the method of addition nor sequence of addition affects the a sub u lowering ability of these humectants. Results were used to formulate shelf stable IMF processed cheese foods with at least four months shelf life

    Storage stability and improvement of intermediate moisture foods, phase 2

    Get PDF
    Methods for improvement of shelf-life stability of intermediate moisture foods are considered. It was found that vitamin C is the most limiting vitamin from a nutritional standpoint with its rate of destruction increasing with a sub w. Techniques for microbial challenge studies were developed. It was shown that organisms have a higher growth a sub w limit if the IMF is prepared by the adsorption process and long times are needed for challenge studies. Several alternative antimycotic systems were found. It was also found that the vegetative cells of pathogens have a maximum heat resistance in the IMF a sub w range. If glycols are in the formula, the IMF should have as high an a sub w as possible. The reverse is true if lipid oxidation occurs. In addition, to prevent rancidity, antioxidants and a low O2 atmosphere are necessary. The package also must be a good moisture barrier

    Computational shelf-life dating : complex systems approaches to food quality and safety

    Get PDF
    Shelf-life is defined as the time that a product is acceptable and meets the consumers expectations regarding food quality. It is the result of the conjunction of all services in production, distribution, and consumption. Shelf-life dating is one of the most difficult tasks in food engineering. Market pressure has lead to the implementation of shelf-life by sensory analyses, which may not reflect the full quality spectra. Moreover, traditional methods for shelf-life dating and small-scale distribution chain tests cannot reproduce in a laboratory the real conditions of storage, distribution, and consumption on food quality. Today, food engineers are facing the challenges to monitor, diagnose, and control the quality and safety of food products. The advent of nanotechnology, multivariate sensors, information systems, and complex systems will revolutionize the way we manage, distribute, and consume foods. The informed consumer demands foods, under the legal standards, at low cost, high standards of nutritional, sensory, and health benefits. To accommodate the new paradigms, we herein present a critical review of shelf-life dating approaches with special emphasis in computational systems and future trends on complex systems methodologies applied to the prediction of food quality and safety.Fundo Europeu de Desenvolvimento Regional (FEDER) - Programa POS-ConhecimentoFundação para a Ciência e a Tecnologia (FCT) - SFRH/BPD/26133/2005, SFRH/ BPD/20735/200

    Effect of Torrefaction on Water Vapor Adsorption Properties and Resistance to Microbial Degradation of Corn Stover

    Get PDF
    The equilibrium moisture content (EMC) of biomass affects transportation, storage, downstream feedstock processing, and the overall economy of biorenewables production. Torrefaction is a thermochemical process conducted in the temperature regime between 200 and 300 °C under an inert atmosphere that, among other benefits, aims to reduce the innate hydrophilicity and susceptibility to microbial degradation of biomass. The objective of this study was to examine water sorption properties of torrefied corn stover. The EMC of raw corn stover, along with corn stover thermally pretreated at three temperatures, was measured using the static gravimetric method at equilibrium relative humidity (ERH) and temperatures ranging from 10 to 98% and from 10 to 40 °C, respectively. Five isotherms were fitted to the experimental data to obtain the prediction equation that best describes the relationship between the ERH and the EMC of lignocellulosic biomass. Microbial degradation of the samples was tested at 97% ERH and 30 °C. Fiber analyses were conducted on all samples. In general, torrefied biomass showed an EMC lower than that of raw biomass, which implied an increase in hydrophobicity. The modified Oswin model performed best in describing the correlation between ERH and EMC. Corn stover torrefied at 250 and 300 °C had negligible dry matter mass loss due to microbial degradation. Fiber analysis showed a significant decrease in hemicellulose content with the increase in pretreatment temperature, which might be the reason for the hydrophobic nature of the torrefied biomass. The outcomes of this work can be used for torrefaction process optimization, and decision-making regarding raw and torrefied biomass storage and downstream processing

    Sucrose in the concentrated solution or the supercooled “state” : a review of caramelisation reactions and physical behaviour

    Get PDF
    Sucrose is probably one of the most studied molecules by food scientists, since it plays an important role as an ingredient or preserving agent in many formulations and technological processes. When sucrose is present in a product with a concentration near or greater than the saturation point—i.e. in the supercooled state—it possesses high potentialities for the food industry in areas as different as pastry industry, dairy and frozen desserts or films and coatings production. This paper presents a review on critical issues and research on highly concentrated sucrose solutions—mainly, on sucrose thermal degradation and relaxation behaviour in such solutions. The reviewed works allow identifying several issues with great potential for contributing to significant advances in Food Science and Technology.Authors are grateful for the valuable discussions with Teresa S. Brandao and Rosiane Lopes da Cunha during this research. Author M. A. C. Quintas acknowledges the financial support of her research by FCT grant SFRH/BPD/41715/2007
    corecore