52 research outputs found

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Antioxidant and pro-oxidant effects of tannins in digestive cells of the freshwater mussel Unio tumidus.

    No full text
    Bivalve molluscs, particularly mussels, are sensitive biomarkers of aquatic ecosystem pollution. The tannins, water-soluble plant polyphenols, may play an important role in this environment and, mainly as a consequence of interaction with pollutants, their toxicity may change. We studied three naturally occurring compounds, tannic acid, ellagic acid and gallic acid, for their ability to modulate DNA damage produced by these tannins alone and in the presence of the oxidative stress inducer H(2)O(2), in cells of the digestive gland of mussels (Unio tumidus). After the treatment of the cells with polyphenols at different concentrations (1, 5, 15, 30, 60, 80, 100, 120, 180, 240 microM) and with hydrogen peroxide in the range of 0.04 and 0.1mM, single-strand breaks (ssb) in DNA were investigated, using the comet assay. The ability of phenolic acids to decrease DNA damage through their antioxidant properties was also assessed. The results show that the phenols, which are known as antioxidative agents, could also act as pro-oxidants. They induced ssb in DNA of the digestive gland at concentrations higher that 10 microM, but lower doses (1 and 5 microM) did not contribute to the DNA damage. This study was also designed to evaluate the protective effect of these tannins against H(2)O(2)-mediated DNA damage in the cells. In this treatment, the two concentrations (1 and 5 microM) significantly decreased the amount of lesions induced by H(2)O(2) (0.04 and 0.1mM). In conclusion, our results demonstrate that antioxidative properties of tannins may change to pro-oxidative activities at the higher concentrations. This suggests that the biologic actions of these compounds may be rather complicated
    • 

    corecore