17 research outputs found

    Contribution à la simulation numérique des transferts de chaleur par conduction, rayonnement et convection thermosolutale dans des cavités

    No full text
    The purpose of this thesis is the contribution to the numerical simulation of heat transfer by conduction, radiation and thermosolutal convection in a closed cavity or in a vertical channel. In most practical cases, the three modes of heat transfer are strongly coupled when the fluid in motion is a mixture of gases. Heat transfer by natural convection and surface condensation in two-dimensional enclosures in contact with a cold external ambient through a wall of finite thickness was studied numerically. Special attention was given on the modeling of the flow of a binary mixture consisting of humid air. Low-Mach number assumption was introduced in order to account for decreases in mixture mass and average pressure within the enclosure between the initial and steady states. Also, a numerical investigation was conducted to study mixed convection in a vertical channel with evaporation of thin liquid films on wetted walls. The effects of the thermal and solutal buoyancy forces on the flow field, heat and mass transfer are illustrated. Results were obtained both for variable and for constant properties using the one-third rule. Air-water vapor and air-hexane vapor mixtures, assumed as ideal gases, are considered under various boundary conditionsL'objectif de cette thèse est de contribuer à la simulation numérique des transferts de chaleur par conduction dans les parois, par rayonnement et par convection thermosolutale dans des cavités fermées ou dans des conduites. Dans la plupart des cas pratiques, les trois modes de transfert de chaleur sont fortement couplés lorsque le fluide en mouvement est un mélange de gaz. Le transfert de chaleur par convection naturelle associé à la condensation surfacique dans une cavité à deux dimensions, remplie d'air humide a été étudié numériquement. Les parois verticales, d'épaisseur finie, sont en contact avec une ambiance extérieure froide. La modélisation faiblement compressible permet à la fois de tenir compte de la diminution de la masse du mélange et de la pression thermodynamique. Egalement, une étude de la convection mixte associée à l'évaporation d'un film liquide ruisselant sur les deux parois d'un canal vertical a été menée. Les effets des forces d'Archimède thermique et solutale sur le développement de l'écoulement ont été montrés. Les résultats ont été obtenus en considérant que les propriétés du mélange sont constantes ou basées sur la règle d'un tiers. Deux mélanges binaires de gaz parfaits air-vapeur et air-hexane ont été considérés en vertu de diverses conditions aux limite

    Contribution to the numerical simulation of heat transfert by conduction, radiation and thermosolutal convection in cavities

    No full text
    L'objectif de cette thèse est de contribuer à la simulation numérique des transferts de chaleur par conduction dans les parois, par rayonnement et par convection thermosolutale dans des cavités fermées ou dans des conduites. Dans la plupart des cas pratiques, les trois modes de transfert de chaleur sont fortement couplés lorsque le fluide en mouvement est un mélange de gaz. Le transfert de chaleur par convection naturelle associé à la condensation surfacique dans une cavité à deux dimensions, remplie d'air humide a été étudié numériquement. Les parois verticales, d'épaisseur finie, sont en contact avec une ambiance extérieure froide. La modélisation faiblement compressible permet à la fois de tenir compte de la diminution de la masse du mélange et de la pression thermodynamique. Egalement, une étude de la convection mixte associée à l'évaporation d'un film liquide ruisselant sur les deux parois d'un canal vertical a été menée. Les effets des forces d'Archimède thermique et solutale sur le développement de l'écoulement ont été montrés. Les résultats ont été obtenus en considérant que les propriétés du mélange sont constantes ou basées sur la règle d'un tiers. Deux mélanges binaires de gaz parfaits air-vapeur et air-hexane ont été considérés en vertu de diverses conditions aux limitesThe purpose of this thesis is the contribution to the numerical simulation of heat transfer by conduction, radiation and thermosolutal convection in a closed cavity or in a vertical channel. In most practical cases, the three modes of heat transfer are strongly coupled when the fluid in motion is a mixture of gases. Heat transfer by natural convection and surface condensation in two-dimensional enclosures in contact with a cold external ambient through a wall of finite thickness was studied numerically. Special attention was given on the modeling of the flow of a binary mixture consisting of humid air. Low-Mach number assumption was introduced in order to account for decreases in mixture mass and average pressure within the enclosure between the initial and steady states. Also, a numerical investigation was conducted to study mixed convection in a vertical channel with evaporation of thin liquid films on wetted walls. The effects of the thermal and solutal buoyancy forces on the flow field, heat and mass transfer are illustrated. Results were obtained both for variable and for constant properties using the one-third rule. Air-water vapor and air-hexane vapor mixtures, assumed as ideal gases, are considered under various boundary condition

    Contribution à la simulation numérique des transferts de chaleur par conduction, rayonnement et convection thermosolutale dans des cavités

    No full text
    The purpose of this thesis is the contribution to the numerical simulation of heat transfer by conduction, radiation and thermosolutal convection in a closed cavity or in a vertical channel. In most practical cases, the three modes of heat transfer are strongly coupled when the fluid in motion is a mixture of gases. Heat transfer by natural convection and surface condensation in two-dimensional enclosures in contact with a cold external ambient through a wall of finite thickness was studied numerically. Special attention was given on the modeling of the flow of a binary mixture consisting of humid air. Low-Mach number assumption was introduced in order to account for decreases in mixture mass and average pressure within the enclosure between the initial and steady states. Also, a numerical investigation was conducted to study mixed convection in a vertical channel with evaporation of thin liquid films on wetted walls. The effects of the thermal and solutal buoyancy forces on the flow field, heat and mass transfer are illustrated. Results were obtained both for variable and for constant properties using the one-third rule. Air-water vapor and air-hexane vapor mixtures, assumed as ideal gases, are considered under various boundary conditionsL'objectif de cette thèse est de contribuer à la simulation numérique des transferts de chaleur par conduction dans les parois, par rayonnement et par convection thermosolutale dans des cavités fermées ou dans des conduites. Dans la plupart des cas pratiques, les trois modes de transfert de chaleur sont fortement couplés lorsque le fluide en mouvement est un mélange de gaz. Le transfert de chaleur par convection naturelle associé à la condensation surfacique dans une cavité à deux dimensions, remplie d'air humide a été étudié numériquement. Les parois verticales, d'épaisseur finie, sont en contact avec une ambiance extérieure froide. La modélisation faiblement compressible permet à la fois de tenir compte de la diminution de la masse du mélange et de la pression thermodynamique. Egalement, une étude de la convection mixte associée à l'évaporation d'un film liquide ruisselant sur les deux parois d'un canal vertical a été menée. Les effets des forces d'Archimède thermique et solutale sur le développement de l'écoulement ont été montrés. Les résultats ont été obtenus en considérant que les propriétés du mélange sont constantes ou basées sur la règle d'un tiers. Deux mélanges binaires de gaz parfaits air-vapeur et air-hexane ont été considérés en vertu de diverses conditions aux limite

    Contribution à la simulation numérique des transferts de chaleur par conduction, rayonnement et convection thermosolutale dans des cavités

    No full text
    L'objectif de cette thèse est de contribuer à la simulation numérique des transferts de chaleur par conduction dans les parois, par rayonnement et par convection thermosolutale dans des cavités fermées ou dans des conduites. Dans la plupart des cas pratiques, les trois modes de transfert de chaleur sont fortement couplés lorsque le fluide en mouvement est un mélange de gaz. Le transfert de chaleur par convection naturelle associé à la condensation surfacique dans une cavité à deux dimensions, remplie d'air humide a été étudié numériquement. Les parois verticales, d'épaisseur finie, sont en contact avec une ambiance extérieure froide. La modélisation faiblement compressible permet à la fois de tenir compte de la diminution de la masse du mélange et de la pression thermodynamique. Egalement, une étude de la convection mixte associée à l'évaporation d'un film liquide ruisselant sur les deux parois d'un canal vertical a été menée. Les effets des forces d'Archimède thermique et solutale sur le développement de l'écoulement ont été montrés. Les résultats ont été obtenus en considérant que les propriétés du mélange sont constantes ou basées sur la règle d'un tiers. Deux mélanges binaires de gaz parfaits air-vapeur et air-hexane ont été considérés en vertu de diverses conditions aux limitesThe purpose of this thesis is the contribution to the numerical simulation of heat transfer by conduction, radiation and thermosolutal convection in a closed cavity or in a vertical channel. In most practical cases, the three modes of heat transfer are strongly coupled when the fluid in motion is a mixture of gases. Heat transfer by natural convection and surface condensation in two-dimensional enclosures in contact with a cold external ambient through a wall of finite thickness was studied numerically. Special attention was given on the modeling of the flow of a binary mixture consisting of humid air. Low-Mach number assumption was introduced in order to account for decreases in mixture mass and average pressure within the enclosure between the initial and steady states. Also, a numerical investigation was conducted to study mixed convection in a vertical channel with evaporation of thin liquid films on wetted walls. The effects of the thermal and solutal buoyancy forces on the flow field, heat and mass transfer are illustrated. Results were obtained both for variable and for constant properties using the one-third rule. Air-water vapor and air-hexane vapor mixtures, assumed as ideal gases, are considered under various boundary conditionsPARIS-EST-Université (770839901) / SudocSudocFranceF

    Dynamic thermal performance of multilayer hollow clay walls filled with insulation materials: Toward energy saving in hot climates

    No full text
    This study examines the benefits of incorporating passive techniques into multilayer hollow clay brick walls to improve their dynamic thermal performance. The finite element approach was used to solve the incompressible Navier-Stokes and energy equations to analyze the dynamic thermal response of walls exposed to real thermal excitations of the Marrakesh climate. The results show that increasing the emissivity from 0.1 to 0.9 significantly increases the total heat load over 24 h. Furthermore, filling 100% of the cavities with insulation materials delayed the temperature peak by about 2.3 h and lowered the decrement factor by roughly 43%, with a value smaller than 0.07. In addition, it is demonstrated that the total thermal load is reduced by approximately 28% for improved wall configurations (100% insulation filling cavities) compared to traditional wall configurations (100% air filling cavities), which aids in improving building energy efficiency

    Thermal characterization of a new bio-composite building material based on plaster and waste chicken feathers

    No full text
    The building materials used in Morocco characterized by a low thermal resistance which generates a huge expense in terms of energy consumption. Promoting new sustainable construction and insulation materials become a necessity. This research study aimed to develop the thermal proprieties of plaster building material by mixing it with waste chicken feathers (WCF) in order to be used as wall exterior rendering. For the purpose of determining the thermal properties of the biocomposite material Plaster-WCF, several experimental measurements of thermophysical proprieties had been performed in order to determine apparent density, thermal conductivity, and thermal diffusivity using the hot plate method in steady-state regime and the Flash method, respectively. The results showed that the addition of waste chicken feathers leads to a remarkable reduction in apparent density of about 12.3%, the thermal conductivity and diffusivity have been reduced by about 30.2% and 18%, respectively, which shows the interest of using this biocomposite material in the construction buildings in order to ensure thermal comfort and reduce greenhouse gas emissions (CO2)

    Thermal characterization of a new effective building material based on clay and olive waste

    No full text
    The influence of thermophysical properties of wall materials on energy performance and comfort in traditional building was investigated. The clay is the most commonly used sustainable building material. The study looked at the effects of the addition of pomace olive on the thermophysical properties of clay bricks to improve the energy efficiency of this ecological material. An experimental measurement of thermal properties of clay mixed with pomace olive was carried out by using the transient and steady state hot-plate and flash methods. The experimental methods are applied to measure the thermal properties of the composite material. The estimation of these thermal characteristics is based on a one dimensional model and the experimental errors are found less than 3%. The composite samples were prepared with different granular classes and mass fractions of the pomace olive in the mixture. The results show that the density of the new material was not substantially influenced by the size of the pomace olive. However, the thermal conductivity and diffusivity decrease from 0.65 W.m-1.K-1 and 4.21×10-7 m2.s-1 to 0.29 W.m-1.K-1 and 2.47×10-7m2.s-1, respectively, according to the variation of the volume fraction of pomace olive from 0 (pure clay) to 71% showing that the olive pomace can be used as effective secondary raw materials in the making of clay bricks

    Thermal characterization of a new effective building material based on clay and olive waste

    No full text
    The influence of thermophysical properties of wall materials on energy performance and comfort in traditional building was investigated. The clay is the most commonly used sustainable building material. The study looked at the effects of the addition of pomace olive on the thermophysical properties of clay bricks to improve the energy efficiency of this ecological material. An experimental measurement of thermal properties of clay mixed with pomace olive was carried out by using the transient and steady state hot-plate and flash methods. The experimental methods are applied to measure the thermal properties of the composite material. The estimation of these thermal characteristics is based on a one dimensional model and the experimental errors are found less than 3%. The composite samples were prepared with different granular classes and mass fractions of the pomace olive in the mixture. The results show that the density of the new material was not substantially influenced by the size of the pomace olive. However, the thermal conductivity and diffusivity decrease from 0.65 W.m-1.K-1 and 4.21×10-7 m2.s-1 to 0.29 W.m-1.K-1 and 2.47×10-7m2.s-1, respectively, according to the variation of the volume fraction of pomace olive from 0 (pure clay) to 71% showing that the olive pomace can be used as effective secondary raw materials in the making of clay bricks

    Energy Efficiency of a Vernacular Building Design and Materials in Hot Arid Climate: Experimental and Numerical Approach

    No full text
    Morocco faces tremendous climate constraints; the climate is hot and dry in most parts of the country, and when selecting an energy-saving approach, the architectural landscape becomes essential.Designer and building professionals seem to have neglected this large-scale integration. Sustainable development programs in terms of sustainable architecture are ongoing in countries around the world. One part of this trend is the growing concern shown in the high environmental efficiency of vernacular architecture. It is within this prescriptive framework that this research study is being conducted, which reveals novel architectural style integrating thermal comfort, energy efficient characteristics, passive solar elements architecture, and construction techniques inspired from the vernacular Ksourian architectural configurations. The goal of the present research study is to identify features of energy efficient vernacular architecture and thermal performances that affect indoor thermal comfort conditions for adaptation to current lifestyles in modern architecture. The key characteristics developed are; built mass structure, building orientation, space planning, availability of sunspace, building techniques, and new coating materials for manufacturing and roofing. The suggested methodology enables to analyze the thermal performance analysis, applying an experimental research using experimental testing measurement and comparative optimization processes for thermal efficiency and comfort evaluation of a traditional vernacular earthen house.Series of experimental thermophysical characterization measurements have been carried out in order to quantify on a real scale the thermophysical properties that characterize the Rissani earth. Thusthermophysical characterization results are operated as input data for the thermal dynamic simulation for the purpose to evaluate thermal performances and comfort under the weather conditions and control natural comfort in both summer and winter, without using heating or cooling systems. Ultimately, the simulations carried out make it possible to identify the optimal orientation, revealing an effective decrease in interior temperatures during summer and providing good thermal comfort in winter
    corecore