12,190 research outputs found

    The China's Rise as an International Trading Power

    Get PDF
    This paper undertakes a detailed review of the policies that have shaped China's explosion of a global supply of exports, and examines long trend statistics on the evolution of China's trading partners and the goods it trades in the post-reform period. This review notes common characteristics in China's trade experience with those of earlier successful export-based economies of East Asia, such as South Korea and Japan. The survey finds that China's pattern of trade and trading partners are similar to those of more market-based Asian economies, but that the Chinese economy's orientation toward foreign trade is considerably greater than expected for an economy of its size and level of development. The authors argue that China still has a long way to go in terms of its export boom, especially if compared to the experiences of South Korea, Japan, and Taiwan. This suggests that China is on track to become one of the world's most formidable trading powers and its export policies and export performance will exert increasing influence on how the global trade regime evolves in the future.

    Shapes of pored membranes

    Full text link
    We study the shapes of pored membranes within the framework of the Helfrich theory under the constraints of fixed area and pore size. We show that the mean curvature term leads to a budding- like structure, while the Gaussian curvature term tends to flatten the membrane near the pore; this is corroborated by simulation. We propose a scheme to deduce the ratio of the Gaussian rigidity to the bending rigidity simply by observing the shape of the pored membrane. This ratio is usually difficult to measure experimentally. In addition, we briefly discuss the stability of a pore by relaxing the constraint of a fixed pore size and adding the line tension. Finally, the flattening effect due to the Gaussian curvature as found in studying pored membranes is extended to two-component membranes. We find that sufficiently high contrast between the components' Gaussian rigidities leads to budding which is distinct from that due to the line tension.Comment: 8 pages, 9 figure

    Magnetic quantum oscillations in YBa2_2Cu3_3O6.61_{6.61} and YBa2_2Cu3_3O6.69_{6.69} in fields of up to 85 T; patching the hole in the roof of the superconducting dome

    Full text link
    We measure magnetic quantum oscillations in the underdoped cuprates YBa2_2Cu3_3O6+x_{6+x} with x=0.61x=0.61, 0.69, using fields of up to 85 T. The quantum-oscillation frequencies and effective masses obtained suggest that the Fermi energy in the cuprates has a maximum at p≈0.11−0.12p\approx 0.11-0.12. On either side, the effective mass may diverge, possibly due to phase transitions associated with the T=0 limit of the metal-insulator crossover (low-pp side), and the postulated topological transition from small to large Fermi surface close to optimal doping (high pp side)

    Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics

    Get PDF
    We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations as t → ∞

    The effects of intrinsic noise on the behaviour of bistable cell regulatory systems under quasi-steady state conditions

    Full text link
    We analyse the effect of intrinsic fluctuations on the properties of bistable stochastic systems with time scale separation operating under1 quasi-steady state conditions. We first formulate a stochastic generalisation of the quasi-steady state approximation based on the semi-classical approximation of the partial differential equation for the generating function associated with the Chemical Master Equation. Such approximation proceeds by optimising an action functional whose associated set of Euler-Lagrange (Hamilton) equations provide the most likely fluctuation path. We show that, under appropriate conditions granting time scale separation, the Hamiltonian can be re-scaled so that the set of Hamilton equations splits up into slow and fast variables, whereby the quasi-steady state approximation can be applied. We analyse two particular examples of systems whose mean-field limit has been shown to exhibit bi-stability: an enzyme-catalysed system of two mutually-inhibitory proteins and a gene regulatory circuit with self-activation. Our theory establishes that the number of molecules of the conserved species are order parameters whose variation regulates bistable behaviour in the associated systems beyond the predictions of the mean-field theory. This prediction is fully confirmed by direct numerical simulations using the stochastic simulation algorithm. This result allows us to propose strategies whereby, by varying the number of molecules of the three conserved chemical species, cell properties associated to bistable behaviour (phenotype, cell-cycle status, etc.) can be controlled.Comment: 33 pages, 9 figures, accepted for publication in the Journal of Chemical Physic

    Spin waves and magnetic exchange interactions in the spin ladder compound RbFe2_2Se3_3

    Full text link
    We report an inelastic neutron scattering study of the spin waves of the one-dimensional antiferromagnetic spin ladder compound RbFe2_2Se3_3. The results reveal that the products, SJSJ's, of the spin SS and the magnetic exchange interactions JJ's along the antiferromagnetic (leg) direction and the ferromagnetic (rung) direction are comparable with those for the stripe ordered phase of the parent compounds of the iron-based superconductors. The universality of the SJSJ's implies nearly universal spin wave dynamics and the irrelevance of the fermiology for the existence of the stripe antiferromagnetic order among various Fe-based materials.Comment: 6 pages, 4 figure

    A CaMKII-NeuroD Signaling Pathway Specifies Dendritic Morphogenesis

    Get PDF
    AbstractThe elaboration of dendrites is fundamental to the establishment of neuronal polarity and connectivity, but the mechanisms that underlie dendritic morphogenesis are poorly understood. We found that the genetic knockdown of the transcription factor NeuroD in primary granule neurons including in organotypic cerebellar slices profoundly impaired the generation and maintenance of dendrites while sparing the development of axons. We also found that NeuroD mediated neuronal activity-dependent dendritogenesis. The activity-induced protein kinase CaMKII catalyzed the phosphorylation of NeuroD at distinct sites, including endogenous NeuroD at Ser336 in primary neurons, and thereby stimulated dendritic growth. These findings uncover an essential function for NeuroD in granule neuron dendritic morphogenesis. Our study also defines the CaMKII-NeuroD signaling pathway as a novel mechanism underlying activity-regulated dendritic growth that may play important roles in the developing and mature brain
    • …
    corecore