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Abstract We analyze under which conditions equilibration between two
competing effects, repulsion modeled by nonlinear diffusion and attraction
modeled by nonlocal interaction, occurs. This balance leads to continuous
compactly supported radially decreasing equilibrium configurations for all
masses. All stationary states with suitable regularity are shown to be radially
symmetric by means of continuous Steiner symmetrization techniques. Cal-
culus of variations tools allow us to show the existence of global minimizers
among these equilibria. Finally, in the particular case of Newtonian interaction
in two dimensions they lead to uniqueness of equilibria for any given mass up
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to translation and to the convergence of solutions of the associated nonlinear
aggregation-diffusion equations towards this unique equilibrium profile up to
translations as t → ∞.

1 Introduction

The evolution of interacting particles and their equilibrium configurations has
attracted the attention of many applied mathematicians and mathematical ana-
lysts for years. Continuum description of interacting particle systems usually
leads to analyze the behavior of a mass density ρ(t, x) of individuals at cer-
tain location x ∈ R

d and time t ≥ 0. Most of the derived models result in
aggregation-diffusion nonlinear partial differential equations through differ-
ent asymptotic or mean-field limits [14,29,75]. The different effects reflect
that equilibria are obtained by competing behaviors: the repulsion between
individuals/particles is modeled through nonlinear diffusion terms while their
attraction is integrated via nonlocal forces. This attractive nonlocal interaction
takes into account that the presence of particles/individuals at a certain location
y ∈ R

d produces a force at particles/individuals located at x ∈ R
d propor-

tional to −∇W (x − y) where the given interaction potential W : Rd → R

is assumed to be radially symmetric and increasing consistent with attractive
forces. The evolution of the mass density of particles/individuals is given by
the nonlinear aggregation-diffusion equation of the form:

∂tρ = �ρm + ∇ · (ρ∇(W ∗ ρ)) x ∈ R
d , t ≥ 0 (1.1)

with initial data ρ0 ∈ L1+(Rd) ∩ Lm(Rd). We will work with degenerate
diffusions, m > 1, that appear naturally in modelling repulsion with very
concentrated repelling nonlocal forces [14,75], but also with linear and fast
diffusion ranges 0 < m ≤ 1, which are also classical in applications [59,77].
These models are ubiquitous in mathematical biology where they have been
used asmacroscopic descriptions for collective behavior or swarmingof animal
species, see [15,20,69–71,84] for instance, or more classically in chemotaxis-
type models, see [11,13,26,53,54,59,77] and the references therein.

On the other hand, this family of PDEs is a particular example of nonlinear
gradient flows in the sense of optimal transport between mass densities, see
[2,33,34]. Themain implication for us is that there is a natural Lyapunov func-
tional for the evolution of (1.1) defined on the set of centered mass densities
ρ ∈ L1+(Rd) ∩ Lm(Rd) given by

E[ρ] = 1

m − 1

∫
Rd

ρm(x) dx + 1

2

∫
Rd×Rd

ρ(x)W (x − y)ρ(y) dx dy

ρ(x) ≥ 0 ,

∫
Rd

ρ(x) dx = M ≥ 0 ,

∫
Rd

xρ(x) dx = 0 , (1.2)
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being the last integral defined in the improper sense, and if m = 1 we replace
the first integral of E[ρ] by ∫

Rd ρ log ρdx . Therefore, if the balance between
repulsion and attraction occurs, these two effects should determine stationary
states for (1.1) including the stable solutions possibly given by local (global)
minimizers of the free energy functional (1.2).

Many properties and results have been obtained in the particular case of
Newtonian attractive potential due to its applications inmathematicalmodeling
of chemotaxis [59,77] and gravitational collapse models [78]. In the classical
2D Keller–Segel model with linear diffusion, it is known that equilibria can
only happen in the critical mass case [10] while self-similar solutions are the
long time asymptotics for subcritical mass cases [13,22]. For supercritical
masses, all solutions blow up in finite time [54]. It was shown in [23,63]
that degenerate diffusion with m > 1 is able to regularize the 2D classical
Keller–Segel problem, where solutions exist globally in time regardless of its
mass, and each solution remain uniformly bounded in time. For the Newtonian
attraction interaction in dimension d ≥ 3, the authors in [9] show that the value
of the degeneracy of the diffusion that allows themass to be the critical quantity
for dichotomy between global existence and finite time blow-up is given by
m = 2 − 2/d. In fact, based on scaling arguments it is easy to argue that
for m > 2 − 2/d, the diffusion term dominates when density becomes large,
leading to global existence of solutions for all masses. This result was shown
in [80] together with the global uniform bound of solutions for all times.

However, in all caseswhere the diffusiondominates over the aggregation, the
long time asymptotics of solutions to (1.1) have not been clarified, as pointed
out in [8]. Are there stationary solutions for all masses when the diffusion term
dominates? And if so, are they unique up to translations? Do they determine
the long time asymptotics for (1.1)? Only partial answers to these questions
are present in the literature, which we summarize below.

To show the existence of stationary solutions to (1.1), a natural idea is to
look for the global minimizer of its associated free energy functional (1.2).
For the 3D case with Newtonian interaction potential and m > 4/3, Lions’
concentration-compactness principle [67] gives the existence of a global min-
imizer of (1.2) for any given mass. The argument can be extended to kernels
that are no more singular than Newtonian potential in R

d at the origin, and
have slow decay at infinity. The existence result is further generalized by [5]
to a broader class of kernels, which can have faster decay at infinity. In all the
above cases, the global minimizer of (1.2) corresponds to a stationary solution
to (1.1) in the sense of distributions. In addition, the global minimizer must be
radially decreasing due to Riesz’s rearrangement theorem.

Regarding the uniqueness of stationary solutions to (1.1), most of the avail-
able results are forNewtonian interaction. For the 3DNewtonian potential with
m > 4/3, for any givenmass, the authors in [65] prove uniqueness of stationary
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solutions to (1.1) among radial functions, and their method can be generalized
to the Newtonian potential in R

d with m > 2 − 2/d. For the 3D case with
m > 4/3, [79] show that all compactly supported stationary solutions must be
radial up to a translation, hence obtaining uniqueness of stationary solutions
among compactly supported functions. The proof is based on moving plane
techniques,where the compact support of the stationary solution seems crucial,
and it also relies on the fact that the Newtonian potential in 3D converges to
zero at infinity. Similar results are obtained in [28] for 2DNewtonian potential
with m > 1 using an adapted moving plane technique. Again, the uniqueness
result is based on showing radial symmetry of compactly supported stationary
solutions. Finally, we mention that uniqueness of stationary states has been
proved for general attracting kernels in one dimension in the case m = 2, see
[21]. To the best of our knowledge, even for Newtonian potential, we are not
aware of any results showing that all stationary solutions are radial (up to a
translation).

Previous results show the limitations of the present theory: although the
existence of stationary states for all masses is obtained for quite general poten-
tials, their uniqueness, crucial for identifying the long time asymptotics, is only
known in very particular cases of diffusive dominated problems. The available
uniqueness results are not very satisfactory due to the compactly supported
restriction on the uniqueness class imposed by the moving plane techniques.
And thus, large time asymptotics results are not at all available due to the lack
of mass confinement results of any kind uniformly in time together with the
difficulty of identifying the long time limits of sequences of solutions due to
the restriction on the uniqueness class for stationary solutions.

If one wants to show that the long time asymptotics are uniquely determined
by the initial mass and center of mass, a clear strategy used in many other non-
linear diffusion problems, see [87] and the references therein, is the following:
one first needs to prove that all stationary solutions are radial up to a translation
in a non restrictive class of stationary solutions, then one has to show unique-
ness of stationary solutions among radial solutions, and finally this uniqueness
will allow to identify the limits of time diverging sequences of solutions, if
compactness of these sequences is shown in a suitable functional framework.
Let us point out that comparison arguments used in standard porous medium
equations are out of the question here due to the lack of maximum principle
by the presence of the nonlocal term.

In this work, we will give the first full result of long time asymptotics for
a diffusion dominated problem using the previous strategy without smallness
assumptions of any kind. More precisely, we will prove that all solutions to
the 2D Keller–Segel equation withm > 1 converge to the global minimizer of
its free energy using the previous strategy. The first step will be to show radial
symmetry of stationary solutions to (1.1) under quite general assumptions on

123



Nonlinear aggregation-diffusion equations... 893

W and the class of stationary solutions. Let us point out that standard rearrange-
ment techniques fail in trying to show radial symmetry of general stationary
states to (1.1) and they are only useful for showing radial symmetry of global
minimizers, see [28]. Comparison arguments for radial solutions allow to prove
uniqueness of radial stationary solutions in particular cases [61,65]. However,
up to our knowledge, there is no general result in the literature about radial
symmetry of stationary solutions to nonlocal aggregation-diffusion equations.

Our first main result is that all stationary solutions of (1.1), with no restric-
tion on m > 0, are radially decreasing up to translation by a fully novel
application of continuous Steiner symmetrization techniques for the prob-
lem (1.1). Continuous Steiner symmetrization has been used in calculus of
variations [18] for replacing rearrangement inequalities [16,64,72], but its
application to nonlinear nonlocal aggregation-diffusion PDEs is completely
new.Most of the results present in the literature using continuous Steiner sym-
metrization deal with functionals of first order, i.e. functionals involving a
power of the modulus of the gradient of the unknown, see [19, Corollary 7.3]
for an application to p-Laplacian stationary equations, and in [58, Section II]
and [18,57], while in our case the functional (1.2) is purely of zeroth order.
The decay of the attractive Newtonian potential interaction term in d ≥ 3
follows from [18, Corollary 2] and [72], which is the only result related to our
strategy.

Wewill construct a curve ofmeasures starting from a stationary stateρ using
continuousSteiner symmetrization such that the functional (1.2) decays strictly
at first order along that curve unless the base point ρ is radially symmetric,
see Proposition 2.15. However, the functional (1.2) has at most a quadratic
variation when ρ is a stationary state as the first term in the Taylor expansion
cancels. This leads to a contradiction unless the stationary state is radially
symmetric. The construction of this curve needs a non-classical technique
of slowing-down the velocities of the level sets for the continuous Steiner
symmetrization in order to copewith the possible compact support of stationary
states in the degenerate case m > 1, see Proposition 2.8. This first main result
is the content of Sect. 2 in which we specify the assumptions on the interaction
potential and the notion of stationary solutions in details. We point out that the
variational structure of (1.1) is crucial to show the radially decreasing property
of stationary solutions.

The result of radial symmetry for general stationary solutions to (1.1) is quite
striking in comparison to other gradient flow models in collective behavior
based on the competition of attractive and repulsive effects via nonlocal inter-
action potentials. Actually, there exist numerical and analytical evidence in
[4,7,62] that there should be stationary solutions of these fully nonlocal inter-
action models which are not radially symmetric despite the radial symmetry of
the interaction potential.Ourfirstmain result shows that this breakof symmetry
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does not happen whenever nonlinear diffusion is chosen to model very strong
localized repulsion forces, see [84]. Symmetry breaking in nonlinear diffu-
sion equations without interactions has also received a lot of attention lately
related to the Caffarelli–Kohn–Nirenberg inequalities, see [45,46]. Another
consequence of our radial symmetry results is the lack of non-radial local
minimizers, and even non-radial critical points, of the free energy functional
(1.2), which is not at all obvious.

We also generalize our radial symmetry result when (1.1) has an additional
term ∇ · (ρ∇V ) on the right-hand side, where V is a confining potential
(see Sect. 2.5 for precise conditions on V ), in the sense that it plays the role
of preventing particles to drift away in the presence of the diffusion. It is
known that with the extra term, the corresponding energy functional has an
additional term

∫
V (x)ρ(x) dx . The particular case of quadratic confinement

V (x) = |x |2
2 is important since it leads to the free energy functional associated

to (1.1) with homogeneous kernels in self-similar variables [24,25,36] and
thus, characterizing the self-similar profiles for those problems.

Finally, let us remark that our radial symmetry result applies to stationary
states of (1.1) for anym > 0 regardless of being in the diffusion dominated case
or not. As soon as stationary states of (1.1) exist under suitable assumptions on
the interaction potentialW , and the confining potential V if present, they must
be radially symmetric up to a translation. This fact makes our result applicable
to the fair-competition cases [10–12] and the aggregation-dominated cases,
see [39,40,68] with degenerate, linear or fast diffusion. Section 2.4 is finally
devoted to deal with the most restrictive case of λ-convex potentials and the
Newtonian potential withm ≥ 1− 1

d . In these cases, we can directly make use
of the key first-order decay result of the interaction energy along Continuous
Steiner symmetrization curves in Proposition 2.15, bypassing the technical
result in Proposition 2.8, in order to give a nice shortcut of the proof of our
main Theorem 2.2 based on gradient flow techniques.

We next study more properties of particular radially decreasing stationary
solutions. We make use of the variational structure to show the existence of
global minimizers to (1.2) under very general hypotheses on the interaction
potential W and m > 1. In Sect. 3, we show that these global minimizers
are in fact radially decreasing continuous functions, compactly supported if
m > 1. These results fully generalize the results in [28,79]. Putting together
Sects. 2 and 3, the uniqueness and full characterization of the stationary states
is reduced to uniqueness among the class of radial solutions. This result is
known in the case of Newtonian attraction kernels [65].

Finally, we make use of the uniqueness among translations for any given
mass of stationary solutions to (1.1) to obtain the second main result of this
work, namely to answer the open problem of the long time asymptotics to (1.1)
with Newtonian interaction in 2D and m > 1. This is accomplished in Sect. 4
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by a compactness argument for which one has to extract the corresponding
uniform in time bounds and a careful treatment of the nonlinear terms and dis-
sipation while taking the limit t → ∞.We do not know how to obtain a similar
result for Newtonian interaction in d ≥ 3 due to the lack of uniform in time
mass confinement bounds in this case. We essentially cannot show that mass
does not escape to infinity while taking the limit t → ∞. However, the com-
pactness and characterization of stationary solutions is still valid in that case.

The present work opens new perspectives to show radial symmetry for
stationary solutions to nonlocal aggregation-diffusion problems. While the
hypotheses of our result to ensure existence of global radially symmetric min-
imizers of (1.2), and in turn of stationary solutions to (1.1), are quite general,
we do not know yet whether there is uniqueness among radially symmetric
stationary solutions (with a fixed mass) for general non-Newtonian kernels.
We even do not have available uniqueness results of radial minimizers beyond
Newtonian kernels. Understanding if the existence of radially symmetric local
minimizers, that are not global, is possible for functionals of the form (1.2)
with radial interaction potential is thus a challenging question. Concerning the
long-time asymptotics of (1.1), the lack of a novel approach to find confine-
ment of mass beyond the usual virial techniques and comparison arguments in
radial coordinates hinders the advance in their understanding even for Newto-
nian kernels with d ≥ 3. Last but not least, our results open a window to obtain
rates of convergence towards the unique equilibrium up to translation for the
Newtonian kernel in 2D. The lack of general convexity of this variational prob-
lem could be compensated by recent results in a restricted class of functions,
see [32]. However, the problem is quite challenging due to the presence of
free boundaries in the evolution of compactly supported solutions to (1.1) that
rules out direct linearization techniques as in the linear diffusion case [22].

2 Radial symmetry of stationary states with degenerate diffusion

Throughout this section, we assume thatm > 0, andW satisfies the following
four assumptions:

(K1) W is attracting, i.e., W (x) ∈ C1(Rd \ {0}) is radially symmetric

W (x) = ω(|x |) = ω(r)

and ω′(r) > 0 for all r > 0 with ω(1) = 0.
(K2) W is no more singular than the Newtonian kernel in R

d at the origin,
i.e., there exists some Cw > 0 such that ω′(r) ≤ Cwr1−d for r ≤ 1.

(K3) There exists some Cw > 0 such that ω′(r) ≤ Cw for all r > 1.
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(K4) Either ω(r) is bounded for r ≥ 1 or there exists Cw > 0 such that for
all a, b ≥ 0:

ω+(a + b) ≤ Cw(1 + ω(1 + a) + ω(1 + b)) .

As usual, ω± denotes the positive and negative part of ω such that ω = ω+ −
ω−. In particular, ifW = −N , modulo the addition of a constant factor, is the
attractive Newtonian potential, where N is the fundamental solution of −�

operator in R
d , then W satisfies all the assumptions. Since the Eq. (1.1) does

not change by adding a constant to the potential W , we will consider that the
potential W is defined modulo additive constants from now on.

We denote by L1+(Rd) the set of all non-negative functions in L1(Rd). Let
us start by defining precisely stationary states to the aggregation Eq. (1.1) with
a potential satisfying (K1)–(K4).

Definition 2.1 Given ρs ∈ L1+(Rd)∩L∞(Rd)we call it a stationary state for
the evolution problem (1.1) if ρm

s ∈ H1
loc(R

d), ∇ψs := ∇W ∗ ρs ∈ L1
loc(R

d),
and it satisfies

∇ρm
s = −ρs∇ψs in R

d (2.1)

in the sense of distributions in R
d .

Let us first note that ∇ψs is globally bounded under the assumptions (K1)–
(K3). To see this, a direct decomposition in near- and far-field sets yields

|∇ψs(x)| ≤
∫
Rd

|∇W (x − y)|ρs(y) dy ≤ Cw

∫
A

1

|x − y|d−1ρs(y) dy

+ Cw

∫
B

ρs(y) dy

≤ Cw

∫
A

1

|x − y|d−1 dy ‖ρs‖L∞(Rd ) + Cw‖ρs‖L1(Rd )

≤ C(‖ρs‖L1(Rd ) + ‖ρs‖L∞(Rd )) . (2.2)

where we split the integrand into the sets A := {y : |x − y| ≤ 1} and
B := R

d \ A, and apply the assumptions (K1)–(K3).
Under the additional assumptions (K4) andω(1+|x |)ρs ∈ L1(Rd), we will

show that the potential function ψs(x) = W ∗ ρs(x) is also locally bounded.
First, note that (K1)–(K3) ensures that |ω(r)| ≤ C̃wφ(r) for all r ≤ 1 with
some C̃w > 0, where

φ(r) :=
⎧⎨
⎩
r2−d − 1 if d ≥ 3
− log(r) if d = 2
1 − r if d = 1

. (2.3)
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Hence we can again perform a decomposition in near- and far-field sets and
obtain

|ψs(x)| ≤
∫
Rd

|W (x − y)|ρs(y) dy ≤ Cw

∫
A

φ(|x − y|)ρs(y) dy

+
∫
B

ω+(|x | + |y|)ρs(y) dy

≤ Cw

∫
A

φ(|x − y|)dy ‖ρs‖L∞(Rd ) + Cw(1 + ω(1 + |x |))‖ρs‖L1(Rd )

+ Cw‖ω(1 + |x |)ρs‖L1(Rd )

≤ C(‖ρs‖L1(Rd ) + ‖ρs‖L∞(Rd )) + ω(1 + |x |)‖ρs‖L1(Rd )

+ Cw‖ω(1 + |x |)ρs‖L1(Rd ) . (2.4)

Our main goal in this section is the following theorem.

Theorem 2.2 Assume that W satisfies (K1)–(K4) and m > 0. Let ρs ∈
L1+(Rd)∩ L∞(Rd) with ω(1+|x |)ρs ∈ L1(Rd) be a non-negative stationary
state of (1.1) in the sense of Definition 2.1. Then ρs must be radially decreasing
up to a translation, i.e. there exists some x0 ∈ R

d , such thatρs(·−x0) is radially
symmetric, and ρs(|x − x0|) is non-increasing in |x − x0|.

Before going into the details of the proof, we briefly outline the strategy
here. Assume there is a stationary state ρs which is not radially decreasing
under any translation. To obtain a contradiction, we consider the free energy
functional E[ρ] associated with (1.1),

E[ρ] = 1

m − 1

∫
Rd

ρmdx + 1

2

∫
Rd

ρ(W ∗ ρ)dx =: S[ρ] + I[ρ], (2.5)

where S[ρ] is replaced by
∫

ρ log ρ dx if m = 1. We first observe that I[ρs]
is finite since the potential function ψs = W ∗ ρs ∈ W1,∞

loc (Rd) satisfies (2.4)
with ω(1 + |x |)ρs ∈ L1(Rd). Since ρs ∈ L1+(Rd) ∩ L∞(Rd), S[ρs] is finite
for all m > 1, but may be −∞ if m ∈ (0, 1].

Belowwe discuss the strategy form > 1 first, and point out themodification
for m ∈ (0, 1] in the next paragraph. Using the assumption that ρs is not
radially decreasing under any translation, we will apply the continuous Steiner
symmetrization to perturb around ρs and construct a continuous family of
densities μ(τ, ·) with μ(0, ·) = ρs , such that E[μ(τ)] − E[ρs] < −cτ for
some c > 0 and any small τ > 0. On the other hand, using that ρs is a
stationary state, we will show that |E[μ(τ)] − E[ρs]| ≤ Cτ 2 for some C > 0
and any small τ > 0. Combining these two inequalities together gives us a
contradiction for sufficiently small τ > 0.
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For m ∈ (0, 1), even if S[ρs] might be −∞ by itself, the difference
S[μ(τ)] − S[ρs] can be still well-defined in the following sense, if we regu-
larize the function 1

m−1ρ
m by 1

m−1ρ(ρ + ε)m−1 and take the limit ε → 0:

S[μ(τ)] − S[ρs]
:= lim

ε→0

∫
1

m − 1

(
μ(τ, x)(μ(τ, x) + ε)m−1 − ρs(x)(ρs(x) + ε)m−1

)
dx,

(2.6)

and ifm = 1 the integrand is replaced byμ(τ, ·) log(μ(τ, ·)+ε)−ρs log(ρs +
ε). Note that as long as μ(τ) has the same distribution as ρs , the above def-
inition gives S[μ(τ)] − S[ρs] = 0. With such modification, we will show
that the difference E[μ(τ)] − E[ρs] is well-defined and satisfies the same two
inequalities as the m > 1 case, so we again have a contradiction for small
τ > 0.

If the kernel W has certain convexity properties and m ≥ 1 − 1
d , then it

is known that (1.1) has a rigorous Wasserstein gradient flow structure. In this
case, once we obtain the crucial estimate: E[μ(τ)] − E[ρs] < −cτ , there is a
shortcut that directly leads to the radial symmetry result, which wewill discuss
in Sect. 2.4.

Let us characterize first the set of possible stationary states of (1.1) in
the sense of Definition 2.1 and their regularity. Parts of these arguments are
reminiscent from those done in [28,79] in the case of attractive Newtonian
potentials.

Lemma 2.3 Let ρs ∈ L1+(Rd) ∩ L∞(Rd) with ω(1 + |x |)ρs ∈ L1(Rd)

be a non-negative stationary state of (1.1) for some m > 0 in the
sense of Definition 2.1. Then ρs ∈ C(Rd), and there exists some C =
C(‖ρs‖L1, ‖ρs‖L∞,Cw, d) > 0, such that

m

|m − 1| |∇(ρm−1
s )| ≤ C in supp ρs if m �= 1, (2.7)

and

|∇ log ρ| ≤ C in supp ρs if m = 1. (2.8)

In addition, if m ∈ (0, 1], then supp ρs = R
d .

Proof Wehave already checked that under these assumptions onW and ρs , the
potential function ψs ∈ W1,∞

loc (Rd) due to (2.2)–(2.4). Since ρm
s ∈ H1

loc(R
d),

then ρm
s is a weak H1

loc(R
d) solution of

�ρm
s = −∇ · (ρs∇ψs) in Rd (2.9)
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with right hand side belonging to W−1,p
loc (Rd) for all 1 ≤ p ≤ ∞. As a

consequence, ρm
s is in fact a weak solution in W1,p

loc (Rd) for all 1 < p < ∞
of (2.9) by classical elliptic regularity results. Sobolev embedding shows that
ρm
s belongs to some Hölder space C0,αloc (Rd), and thus ρs ∈ C0,βloc (Rd) with

β := min{α/m, 1}. Let us define the set  = {x ∈ R
d : ρs(x) > 0}. Since

ρs ∈ C(Rd), then  is an open set and it consists of a countable number of
open possibly unbounded connected components. Let us take any bounded
smooth connected open subset � such that � ⊂ , and start with the case
m �= 1. Since ρs ∈ C(Rd), then ρs is bounded away from zero in � and thus
due to the assumptions on ρs , we have that m

m−1∇ρm−1
s = 1

ρs
∇ρm

s holds in
the distributional sense in �. We conclude that wherever ρs is positive, (2.1)
can be interpreted as

∇
(

m

m − 1
ρm−1
s + ψs

)
= 0 , (2.10)

in the sense of distributions in. Hence, the functionG(x) = m
m−1ρ

m−1
s (x)+

ψs(x) is constant in each connected component of . From here, we deduce
that any stationary state of (1.1) in the sense of Definition 2.1 is given by

ρs(x) =
(
m − 1

m
(G − ψs)(x)

) 1
m−1

+
, (2.11)

where G(x) is a constant in each connected component of the support of ρs ,
and its value may differ in different connected components. Due to ψs ∈
W1,∞

loc (Rd), we deduce that ρs ∈ C0,1/(m−1)
loc (Rd) if m ≥ 2 and ρs ∈ C0,1loc (R

d)

for m ∈ (0, 1) ∪ (1, 2). Putting together (2.11) and (2.2), we conclude the
desired estimate.

In addition, from (2.11) we have that  = R
d if m ∈ (0, 1): if not, let 0

be any connected component of , and take x0 ∈ ∂0. As we take a sequence
of points xn → x0 with xn ∈ 0, we have that ρs(xn)m−1 → ∞, whereas
the sequence G(xn) − ψs(xn) is bounded [since ψs is locally bounded due to
(2.4)], a contradiction.

If m = 1, the above argument still goes through except that we replace
(2.10) by

∇ (log ρs + ψs) = 0

in the sense of distributions in . As a result, the function G(x) = log ρs +
ψs(x) is constant in each connected component of . The same argument as
the m ∈ (0, 1) case then yields that ρs ∈ C0,1loc (R

d) and  = R
d , leading to

the estimate |∇ log ρ| ≤ C in Rd . ��
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2.1 Some preliminaries about rearrangements

Nowwe briefly recall some standard notions and basic properties of decreasing
rearrangements for non-negative functions that will be used later. For a deeper
treatment of these topics, we address the reader to the books [6,51,56,60,64]
or the papers [73,81–83]. We denote by |E |d the Lebesgue measure of a
measurable set E in R

d . Moreover, the set E# is defined as the ball centered
at the origin such that |E#|d = |E |d .
A non-negative measurable function f defined on R

d is called radially sym-
metric if there is a non-negative function f̃ on [0, ∞) such that f (x) = f̃ (|x |)
for all x ∈ R

d . If f is radially symmetric, we will often write f (x) = f (r)
for r = |x | ≥ 0 by a slight abuse of notation. We say that f is rearranged if it
is radial and f̃ is a non-negative right-continuous, non-increasing function of
r > 0. A similar definition can be applied for real functions defined on a ball
BR(0) = {x ∈ R

d : |x | < R
}
.

We define the distribution function of f ∈ L1+(Rd) by

ζ f (τ ) = |
{
x ∈ R

d : f (x) > τ
}

|d , for all τ > 0.

Then the function f ∗ : [0, +∞) → [0, +∞] defined by

f ∗(s) = sup
{
τ > 0 : ζ f (τ ) > s

}
, s ∈ [0, +∞),

will be called the Hardy–Littlewood one-dimensional decreasing rearrange-
ment of f . By this definition, one could interpret f ∗ as the generalized
right-inverse function of ζ f (τ ).

Making use of the definition of f ∗, we can define a special radially sym-
metric decreasing function f #, which we will call the Schwarz spherical
decreasing rearrangement of f by means of the formula

f #(x) = f ∗(ωd |x |d) x ∈ R
d , (2.12)

where ωd is the volume of the unit ball in R
d . It is clear that if the set  f ={

x ∈ R
d : f (x) > 0

}
of f has finite measure, then f # is supported in the ball

#
f .

One can show that f ∗ (and so f #) is equidistributed with f (i.e. they have the
same distribution function). Thus if f ∈ L p(Rd), a simple use of Cavalieri’s
principle (see e.g. [60,82]) leads to the invariance property of the L p norms:

‖ f ‖L p(Rd ) = ‖ f ∗‖L p(0,∞) = ‖ f #‖L p(Rd ) for all 1 ≤ p ≤ ∞ . (2.13)
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In particular, using the layer-cake representation formula (see e.g. [64]) one
could easily infer that

f #(x) =
∫ ∞

0
χ{ f >τ }#dτ.

Among the many interesting properties of rearrangements, it is worth men-
tioning the Hardy–Littlewood inequality (see [6,51,60] for the proof): for any
couple of non-negative measurable functions f, g on Rd , we have

∫
Rd

f (x)g(x)dx ≤
∫
Rd

f #(x)g#(x)dx . (2.14)

Since in Sect. 4 we will use estimates of the solutions of Keller–Segel
problems in terms of their integrals, let us now recall the concept of comparison
of mass concentration, taken from [85], that is remarkably useful.

Definition 2.4 Let f, g ∈ L1
loc(R

d) be two non-negative, radially symmetric
functions onRd . We say that f is less concentrated than g, and wewrite f ≺ g
if for all R > 0 we get

∫
BR(0)

f (x)dx ≤
∫
BR(0)

g(x)dx .

The partial order relationship ≺ is called comparison of mass concentrations.
Of course, this definition can be suitably adapted if f, g are radially symmetric
and locally integrable functions on a ball BR . The comparison of mass con-
centrations enjoys a nice equivalent formulation if f and g are rearranged,
whose proof we refer to [1,41,86]:

Lemma 2.5 Let f, g ∈ L1+(Rd) be two non-negative rearranged func-
tions. Then f ≺ g if and only if for every convex nondecreasing function
� : [0, ∞) → [0, ∞) with �(0) = 0 we have

∫


�( f (x)) dx ≤
∫



�(g(x)) dx .

From this Lemma, it easily follows that if f ≺ g and f, g ∈ L p(Rd) are
rearranged and non-negative, then

‖ f ‖L p(Rd ) ≤ ‖g‖L p(Rd ) ∀p ∈ [1, ∞].

Let us also observe that if f, g ∈ L1+(Rd) are non-negative and rearranged,
then f ≺ g if and only if for all s ≥ 0 we have
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∫ s

0
f ∗(σ )dσ ≤

∫ s

0
g∗(σ )dσ.

If f ∈ L1+(Rd), we denote by M2[ f ] the second moment of f , i.e.

M2[ f ] :=
∫
Rd

f (x)|x |2dx . (2.15)

In this regard, another interesting property which will turn out useful is the
following

Lemma 2.6 Let f, g ∈ L1+(Rd) with ‖ f ‖L1(Rd ) = ‖g‖L1(Rd ). If additionally
g is rearranged and f # ≺ g, then M2[ f ] ≥ M2[g].
Proof Let us consider the sequence of bounded radially increasing functions
{ϕn}, where ϕn(x) = min

{|x |2, n} is the truncation of the function |x |2 at the
level n and define the function

hn = n − ϕn.

Then hn is non-negative, bounded and rearranged. Thus using the Hardy–
Littlewood inequality (2.14) and [1, Corollary 2.1] we find

∫
Rd

f (x) ϕn(x)dx = n‖ f ‖L1(Rd ) −
∫
Rd

f (x) hn(x)dx

≥ n‖ f ‖L1(Rd ) −
∫
Rd

f #(x) hn(x)dx

≥ n‖g‖L1(Rd ) −
∫
Rd

g(x) hn(x)dx =
∫
Rd

g(x) ϕn(x)dx

Then passing to the limit as n → ∞ we find the desired result. ��
Remark 2.7 Lemma 2.6 can be easily generalized when |x |2 is replaced by
any non-negative radially increasing potential V = V (r), r = |x |, such that

lim
r→+∞ V (r) = +∞.

2.2 Continuous Steiner symmetrization

Although classical decreasing rearragement techniques are very useful to study
properties of the minimizers and for solutions of the evolution problem (1.1)
in next sections, we do not know how to use them in connection with showing
that stationary states are radially symmetric. For an introduction of continuous
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Steiner symmetrization and its properties, see [16,18,64]. In this subsec-
tion, we will use continuous Steiner symmetrization to prove the following
proposition.

Proposition 2.8 Let μ0 ∈ C(Rd) ∩ L1+(Rd), and assume it is not radially
decreasing after any translation.

Moreover, if m ∈ (0, 1) ∪ (1, ∞), assume that | m
m−1∇μm−1

0 | ≤ C0 in
suppμ0 for some C0; and if m = 1 assume that |∇ logμ0| ≤ C0 in suppμ0
for some C0. In addition, if m ∈ (0, 1], assume that suppμ0 = R

d .
Then there exist some δ0 > 0, c0 > 0,C1 > 0 (depending on m, μ0 and W)

and a function μ ∈ C([0, δ0] × R
d) with μ(0, ·) = μ0, such that μ satisfies

the following for a short time τ ∈ [0, δ0], where E is as given in (2.5):

E[μ(τ)] − E[μ0] ≤ −c0τ, (2.16)

|μ(τ, x) − μ0(x)| ≤ C1μ0(x)
max{1,2−m}τ for all x ∈ R

d , (2.17)∫
Di

(μ(τ, x) − μ0(x))dx = 0 for any connected component Di of suppμ0.

(2.18)

2.2.1 Definitions and basic properties of Steiner symmetrization

Let us first introduce the concept of Steiner symmetrization for a measurable
set E ⊂ R

d . If d = 1, the Steiner symmetrization of E is the symmetric
interval S(E) = {x ∈ R : |x | < |E |1/2}. Now we want to define the Steiner
symmetrization of E with respect to a direction inRd for d ≥ 2. The direction
we symmetrize corresponds to the unit vector e1 = (1, 0, . . . , 0), although the
definition can be modified accordingly when considering any other direction
in Rd .

Let us label a point x ∈ R
d by (x1, x ′), where x ′ = (x2, . . . , xd) ∈ R

d−1

and x1 ∈ R. Given anymeasurable subset E ofRd we define, for all x ′ ∈ R
d−1,

the section of E with respect to the direction x1 as the set

Ex ′ = {x1 ∈ R : (x1, x
′) ∈ E

}
.

Then we define the Steiner symmetrization of E with respect to the direction
x1 as the set S(E) which is symmetric about the hyperplane {x1 = 0} and is
defined by

S(E) =
{
(x1, x

′) ∈ R
d : x1 ∈ S(Ex ′)

}
.

In particular we have that |E |d = |S(E)|d .
Now, consider a non-negative function μ0 ∈ L1(Rd), for d ≥ 2. For all

x ′ ∈ R
d−1, let us consider the distribution function ofμ0(·, x ′), i.e. the function
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ζμ0(h, x ′) = |Uh
x ′ |1 for all h > 0, x ′ ∈ R

d−1,

where

Uh
x ′ = {x1 ∈ R : μ0(x1, x

′) > h}. (2.19)

Then we can give the following definition:

Definition 2.9 We define the Steiner symmetrization (or Steiner rearrange-
ment) of μ0 in the direction x1 as the function Sμ0 = Sμ0(x1, x ′) such that
Sμ0(·, x ′) is exactly the Schwarz rearrangement of μ0(·, x ′) i.e. (see (2.12))

Sμ0(x1, x
′) = sup

{
h > 0 : ζμ0(h, x ′) > 2|x1|

}
.

As a consequence, the Steiner symmetrization Sμ0(x1, x ′) is a function being
symmetric about the hyperplane {x1 = 0} and for each h > 0 the level set

{
(x1, x

′) : Sμ0(x1, x
′) > h

}

is equivalent to the Steiner symmetrization

S(
{
(x1, x

′) : μ0(x1, x
′) > h

}
)

which implies that Sμ0 and μ0 are equidistributed, yielding the invariance of
the L p norms when passing from μ0 to Sμ0, that is for all p ∈ [1, ∞] we
have

‖Sμ0‖L p(Rd ) = ‖μ0‖L p(Rd ).

Moreover, by the layer-cake representation formula, we have

Sμ0(x1, x
′) =

∫ ∞

0
χS(Uh

x ′ )
(x1) dh . (2.20)

Now, we introduce a continuous version of this Steiner procedure via an inter-
polation between a set or a function and their Steiner symmetrizations that we
will use in our symmetry arguments for steady states.

Definition 2.10 For an open set U ⊂ R, we define its continuous Steiner
symmetrization Mτ (U ) for any τ ≥ 0 as below. In the following we abbreviate
an open interval (c − r, c + r) by I (c, r), and we denote by sgn c the sign of
c (which is 1 for positive c, −1 for negative c, and 0 if c = 0).
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τ

x
c

τ

x
c1

τ1

c2

Fig. 1 Illustrations of Mτ (U ) whenU is a single open interval (left), and whenU is the union
of two open intervals (right)

(1) If U = I (c, r), then

Mτ (U ) :=
{
I (c − τ sgn c, r) for 0 ≤ τ < |c|,
I (0, r) for τ ≥ |c|.

(2) If U = ∪N
i=1 I (ci , ri ) (where all I (ci , ri ) are disjoint), then Mτ (U ) :=

∪N
i=1M

τ (I (ci , ri )) for 0 ≤ τ < τ1, where τ1 is the first time two intervals
Mτ (I (ci , ri )) share a common endpoint. Once this happens, we merge
them into one open interval, and repeat this process starting from τ = τ1.

(3) If U = ∪∞
i=1 I (ci , ri ) (where all I (ci , ri ) are disjoint), let UN =

∪N
i=1 I (ci , ri ) for each N > 0, and define Mτ (U ) := ∪∞

N=1M
τ (UN ).

See Fig. 1 for illustrations of Mτ (U ) in the cases (1) and (2). Also, we point
out that case (3) can be seen as a limit of case (2), since for each N1 < N2
one can easily check that Mτ (UN1) ⊂ Mτ (UN2) for all τ ≥ 0. Moreover,
according to [18], the definition of Mτ (U ) can be extended to any measurable
set U of R, since

U =
∞⋂
n=1

On \ N ,

being On ⊃ On+1 n = 1, 2, . . . , open sets and N a nullset.
In the next lemma we state four simple facts about Mτ . They can be easily

checked for case (1) and (2) (hence true for (3) as well by taking the limit),
and we omit the proof.

Lemma 2.11 Given any open set U ⊂ R, let Mτ (U ) be defined in Definition
2.10. Then

(a) M0(U ) = U, M∞(U ) = S(E).
(b) |Mτ (U )| = |U | for all τ ≥ 0.
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Fig. 2 Illustrations of μ0
and Sτ μ0 (for a small
τ > 0) μ0

Sτμ0

x1

(c) If U1 ⊂ U2, we have Mτ (U1) ⊂ Mτ (U2) for all τ ≥ 0.
(d) Mτ has the semigroup property: Mτ+sU = Mτ (Ms(U )) for any τ, s ≥ 0

and open set U.

Once we have the continuous Steiner symmetrization for a one-dimensional
set,we candefine the continuousSteiner symmetrization (in a certain direction)
for a non-negative function in Rd .

Definition 2.12 Given μ0 ∈ L1+(Rd), we define its continuous Steiner sym-
metrization Sτμ0 (in direction e1 = (1, 0, · · · , 0)) as follows. For any
x1 ∈ R, x ′ ∈ R

d−1, h > 0, let

Sτμ0(x1, x
′) :=

∫ ∞

0
χMτ (Uh

x ′ )
(x1)dh,

where Uh
x ′ is defined in (2.19).

For an illustration of Sτμ0 for μ0 ∈ L1(R), see Fig. 2.
Using the above definition, Lemma 2.11 and the representation (2.20) one

immediately has

S0μ0 = μ0, S∞μ0 = Sμ0.

Furthermore, it is easy to check that Sτμ0 = μ0 for all τ if and only if μ0
is symmetric decreasing about the hyperplane H = {x1 = 0}. Below is the
definition for a function being symmetric decreasing about a hyperplane:

Definition 2.13 Let μ0 ∈ L1+(Rd). For a hyperplane H ⊂ R
d (with normal

vector e), we say μ0 is symmetric decreasing about H if for any x ∈ H , the
function f (τ ) := μ0(x + τe) is rearranged, i.e. if f = f #.

Next we state some basic properties of Sτ without proof, see [18,56,58] for
instance.
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Lemma 2.14 The continuous Steiner symmetrization Sτμ0 in Definition 2.12
has the following properties:

(a) For any h > 0, |{Sτμ0 > h}| = |{μ0 > h}|. As a result, ‖Sτμ0‖L p(Rd ) =
‖μ0‖L p(Rd ) for all 1 ≤ p ≤ +∞.

(b) Sτ has the semigroup property, that is, Sτ+sμ0 = Sτ (Ssμ0) for any τ, s ≥
0 and non-negative μ0 ∈ L1(Rd).

Lemma 2.14 immediately implies that S[Sτμ0] is constant in τ , where S[·]
is as given in (2.5).

2.2.2 Interaction energy under Steiner symmetrization

In this subsection, we will investigate I[Sτμ0]. It has been shown in [18,
Corollary 2] and [64, Theorem3.7] thatI[Sτμ0] is non-increasing in τ . Indeed,
in the case that μ0 is a characteristic function χ0 , it is shown in [72] that
I[Sτμ0] is strictly decreasing for τ small enough if 0 is not a ball. However,
in order to obtain (2.16) for a strictly positive c0, some refined estimates are
needed, and we will prove the following:

Proposition 2.15 Let μ0 ∈ C(Rd) ∩ L1+(Rd). Assume the hyperplane H =
{x1 = 0} splits the mass of μ0 into half and half, and μ0 is not symmetric
decreasing about H. Let I[·] be given in (2.5), where W satisfies the assump-
tions (K1)–(K3). Then I[Sτμ0] is non-increasing in τ , and there exists some
δ0 > 0 (depending on μ0) and c0 > 0 (depending on μ0 and W), such that

I[Sτμ0] ≤ I[μ0] − c0τ for all τ ∈ [0, δ0].

The building blocks to prove Proposition 2.15 are a couple of lemmas esti-
mating how the interaction energy between two one-dimensional densities
μ1, μ2 changes under continuous Steiner symmetrization for each of them.
That is, we will investigate how

IK[μ1, μ2](τ ) :=
∫
R×R

(Sτμ1)(x)(S
τμ2)(y)K(x − y)dxdy (2.21)

changes in τ for a given one-dimensional kernel K to be determined. We start
with the basic case where μ1, μ2 are both characteristic functions of some
open interval.

Lemma 2.16 Assume K(x) ∈ C1(R) is an even function with K′(x) < 0 for
all x > 0. For i = 1, 2, let μi := χI (ci ,ri ) respectively, where I (c, r) is as
given in Definition 2.10. Then the following holds for the function I (τ ) :=
IK[μ1, μ2](τ ) introduced in (2.21):
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(a) d+
dτ

I (0) ≥ 0. (Here d+
dτ

stands for the right derivative.)
(b) If in addition sgn c1 �= sgn c2, then

d+

dτ
I (0) ≥ cw min{r1, r2}|c2 − c1| > 0, (2.22)

where cw is the minimum of |K′(r)| for r ∈ [ |c2−c1|
2 , r1 + r2 + |c2 − c1|].

Proof By definition of Sτ , we have Sτμi = χMτ (I (ci ,ri )) for i = 1, 2 and all
τ ≥ 0. If sgn c1 = sgn c2, the two intervals Mτ (I (ci , ri )) are moving towards
the same direction for small enough τ , during which their interaction energy
I (τ ) remains constant, implying d

dτ
I (0) = 0. Hence it suffices to focus on

sgn c1 �= sgn c2 and prove (2.22).
Without loss of generality, we assume that c2 > c1, so that sgn c2 − sgn c1

is either 2 or 1. The definition of Mτ gives

I (τ ) =
∫ r1+c1−τ sgn c1

−r1+c1−τ sgn c1

∫ r2+c2−τ sgn c2

−r2+c2−τ sgn c2
K(x − y)dydx

=
∫ r1

−r1

∫ r2

−r2
K(x − y + (c1 − c2) + τ(sgn c2 − sgn c1))dydx .

Taking its right derivative in τ yields

d+

dτ
I (0) = (sgn c2 − sgn c1)

∫ r1

−r1

∫ r2

−r2
K′(x − y + (c1 − c2))dydx .

Let us deal with the case r1 ≤ r2 first. In this case we rewrite d+
dτ

I (0) as

d+

dτ
I (0) = (sgn c2 − sgn c1)

∫
Q
K′(x − y)dxdy, (2.23)

where Q is the rectangle [−r1, r1] × [−r2 + (c2 − c1), r2 + (c2 − c1)], as
illustrated in Fig. 3. Let Q− = Q ∩{x − y > 0}, and Q+ = Q ∩{x − y < 0}.
The assumptions onK implyK′(x − y) < 0 in Q−, andK′(x − y) > 0 in Q+.

Let Q̃+ := Q+∩{y ≤ r2}, and D := [−r1, r1]×[r2+ c2−c1
2 , r2+(c2−c1)].

(Q̃+ and D are the yellow set and green set in Fig. 3 respectively). By defini-
tion, Q̃+ and D are disjoint subsets of Q+, so

d+

dτ
I (0) ≥(sgn c2 − sgn c1)

×
(∫

Q−
K′(x − y)dxdy

︸ ︷︷ ︸
≤0

+
∫
Q̃+
K′(x − y)dxdy

︸ ︷︷ ︸
≥0

+
∫
D
K′(x − y)dxdy

︸ ︷︷ ︸
>0

)
.

(2.24)
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Fig. 3 Illustration of the sets
Q, Q−, Q̃+ and D in the
proof of Lemma 2.16

Q

x

y

D
c2−c1

2 {

Q−

Q̃+

−r1 r1

−r2 + c2 − c1

r2 + c2 − c1

r2

y = x

We claim that
∫
Q− K′(x − y)dxdy + ∫

Q̃+ K′(x − y)dxdy ≥ 0. To see

this, note that Q− ∪ Q̃+ forms a rectangle, whose center has a zero x-
coordinate and a positive y-coordinate. Hence for any h > 0, the line segment
Q̃+ ∪ {x − y = −h} is longer than Q− ∪ {x − y = h}, which gives the claim.
Therefore, (2.24) becomes

d+

dτ
I (0) ≥ (sgn c2 − sgn c1)

∫
D
K′(x − y)dxdy ≥

∫
D
K′(x − y)dxdy

≥ |D| min
(x,y)∈DK′(x − y)

Note that D is a rectangle with area r1(c2 − c1), and for any (x, y) ∈ D, we
have (recall that r2 > r1)

|c2 − c1|
2

+ r2 − r1 ≤ y − x ≤ r1 + r2 + |c2 − c1|.

This finally gives

d+

dτ
I (0) ≥ r1(c2 − c1) min

r∈[ |c2−c1|
2 ,r1+r2+|c2−c1|]

|K′(r)|.

Similarly, if r1 > r2, then I ′(0) can be written as (2.23) with Q̃ defined as
[−r1 + (c2 − c1), r1 + (c2 − c1)]× [−r2, r2] instead, and the above inequality
would hold with the roles of r1 and r2 interchanged. Combining these two
cases, we have

d+

dτ
I (0) ≥ cw min{r1, r2}|c2 − c1| for sgn c1 �= sgn c2,

where cw is the minimum of |K′(r)| for r ∈ [ |c2−c1|
2 , r1 + r2 + |c2 − c1|]. ��
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The next lemma generalizes the above result to open sets with finite mea-
sures.

Lemma 2.17 Assume K(x) ∈ C1(R) is an even function with K′(r) < 0 for
all r > 0. For open sets U1,U2 ⊂ R with finite measure, let μi := χUi for
i = 1, 2, and I (τ ) := IK[μ1, μ2](τ ) is as defined in (2.21). Then

(a) d
dτ

I (τ ) ≥ 0 for all τ ≥ 0;
(b) In addition, assume that there exists some a ∈ (0, 1) and R >

max{|U1|, |U2|} such that |U1 ∩ (
|U1|
2 , R)| > a, and |U2 ∩ (−R, −|U2|

2 )| >

a. Then for all τ ∈ [0, a/4], we have
d+

dτ
I (τ ) ≥ 1

128
cwa

3 > 0, (2.25)

where cw is the minimum of |K′(r)| for r ∈ [a4 , 4R].
Proof It suffices to focus on the case when U1,U2 both consist of a finite
disjoint union of open intervals, and for the general case we can take the limit.
Recall that Sτμi = χMτ (Ui ) for i = 1, 2 and all τ ≥ 0.

To show (a), due to the semigroup property of Sτ in Lemma 2.14, all we
need to show is d+

dτ
I (0) ≥ 0. By writing U1,U2 each as a union of disjoint

open intervals and expressing I (τ ) a sum of the pairwise interaction energy,
(a) immediately follows from Lemma 2.16(a).

We will prove (b) next. First, we claim that

A1(τ ) :=
∣∣∣∣Mτ (U1) ∩

( |U1|
2

+ a

4
, R

)∣∣∣∣ > a

4
for all τ ∈ [0, a

4
].
(2.26)

To see this, note that A1(0) > 3a
4 due to the assumption |U1 ∩ (

|U1|
2 , R)| > a.

Since each interval in Mτ (U1) moves with speed either 0 or ±1 at each τ ,
we know A′

1(τ ) ≥ −2 for all τ , yielding the claim. (Similarly, A2(τ ) :=
|Mτ (U2) ∩ (−R, −|U2|

2 − a
4 )| > a

4 for all τ ∈ [0, a
4 ].)

Now we pick any τ0 ∈ [0, a
4 ], and we aim to prove (2.25) at this particular

time τ0. At τ = τ0, write Mτ0(U1) := ∪N1
k=1 I (c

1
k , r

1
k ), where all intervals

I (c1k , r
1
k ) are disjoint, and none of them share common endpoints – if they do,

we merge them into one interval.
Note that for every x ∈ Mτ0(U1) ∩ (

|U1|
2 + a

4 , R), x must belong to some
I (c1k , r

1
k ) with a/4 ≤ c1k ≤ R + |U1|/2. Otherwise, the length of I (c1k , r

1
k )

would exceed |U1|, contradicting Lemma 2.11(a). We then define

I1 :=
{
1 ≤ k ≤ N1 : a

4
≤ c1k ≤ R + |U1|/2

}
.
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Combining the above discussion with (2.26), we have
∑

k∈I1
|I (c1k , r1k )| ≥

a/4, i.e.

∑
k∈I1

r1k ≥ a

8
. (2.27)

Likewise, let Mτ0(U2) := ∪N2
k=1 I (c

2
k , r

2
k ), and denote by I2 the set of indices

k such that−R−|U2|/2 ≤ c2k ≤ −a
4 , and similarly we have

∑
k∈I2

r2k ≥ a/8.
The semigroup property of Mτ in Lemma 2.11 gives that for all s > 0,

Mτ0+s(U1) = Ms(Mτ0(U1)) = Ms(∪N1
k=1 I (c

1
k , r

1
k )).

Since none of the intervals I (c1k , r
1
k ) share common endpoints, we have

Ms(∪N1
k=1 I (c

1
k , r

1
k )) = ∪N1

k=1M
s(I (c1k , r

1
k )) for sufficiently small s > 0.

A similar result holds for Mτ0+s(U2), hence we obtain for sufficiently small
s > 0:

I (τ0 + s) = IK[χMτ0 (U1), χMτ0 (U2)](s) =
N1∑
k=1

N2∑
l=1

IK[χI (c1k ,r
1
k ), χI (c2l ,r

2
l )](s).

Applying Lemma 2.16(a) to the above identity yields

d+

dτ
I (τ0) =

N1∑
k=1

N2∑
l=1

d

ds
IK[χI (c1k ,r

1
k ), χI (c2l ,r

2
l )]
∣∣∣
s=0

≥
∑
k∈I1

∑
l∈I2

d

ds
IK[χI (c1k ,r

1
k ), χI (c2l ,r

2
l )]
∣∣∣
s=0︸ ︷︷ ︸

=:Tkl

. (2.28)

Next wewill obtain a lower bound for Tkl . By definition ofI1 andI2, for each
k ∈ I1 and l ∈ I2 we have that c1k ≥ a

4 and c2l ≤ −a
4 , hence |c2l − c1k | ≥ a

2 .
Thus Lemma 2.16(b) yields

Tkl ≥ cw min{r1k , r2l }|c2l − c1k | ≥ cw

a

2
min{r1k , r2l } for k ∈ I1, l ∈ I2,

where cw = minr∈[ a4 ,4R] |K′(r)| (here we used that for k ∈ I1, l ∈ I2, we

have r1k +r2l +|c2l −c1k | ≤ |U1|/2+|U2|/2+(R+|U1|/2)+(R+|U2|/2) ≤ 4R,
due to the assumption R > max{|U1|, |U2|}.)

Plugging the above inequality into (2.28) and using min{u, v} ≥ min{u, 1}
min{v, 1} for u, v > 0, we have
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912 J. A. Carrillo et al.

d+

dτ
I (τ0) ≥ acw

2

∑
k∈I1

∑
l∈I2

min{r1k , 1}min{r2l , 1}

= acw

2

⎛
⎝∑

k∈I1

min{r1k , 1}
⎞
⎠
⎛
⎝∑

l∈I2

min{r2l , 1}
⎞
⎠

≥ acw

2
min

⎧⎨
⎩1,

∑
k∈I1

r1k

⎫⎬
⎭min

⎧⎨
⎩1,

∑
l∈I2

r2l

⎫⎬
⎭

≥ acw

2
min

{
1,

a

8

}2 ≥ 1

128
cwa

3,

herewe applied (2.27) in the second-to-last inequality, and used the assumption
a ∈ (0, 1) for the last inequality. Since τ0 ∈ [0, a/4] is arbitrary, we can
conclude. ��

Now we are ready to prove Proposition 2.15.

Proof of Proposition 2.15 Since μ0 ∈ C(Rd) ∩ L1+(Rd) is not symmetric
decreasing about H = {x1 = 0}, we know that there exists some x ′ ∈ R

d−1

and h > 0, such that Uh
x ′ := {x1 ∈ R : μ0(x1, x ′) > h} has finite measure,

and its difference from (−|Uh
x ′ |/2, |Uh

x ′ |/2) has nonzero measure.
For R > 0, a > 0, define

BR,a
1 =

{
(x ′, h) ∈ R

d−1 × (0,+∞) :
∣∣∣Uh

x ′ ∩ (|Uh
x ′ |/2, R)

∣∣∣ > a, |x ′| ≤ R
}

,

BR,a
2 =

{
(x ′, h) ∈ R

d−1 × (0, +∞) :
∣∣∣Uh

x ′ ∩ (−R,−|Uh
x ′ |/2)

∣∣∣ > a, |x ′| ≤ R
}

.

Our discussion above yields that at least one of BR,a
1 and BR,a

2 is nonempty
when R is sufficiently large and a > 0 sufficiently small (hence at least one of
them must have nonzero measure by continuity of μ0). Indeed, using the fact
that H splits the mass of μ0 into half and half, we can choose R sufficiently
large and a > 0 sufficiently small (both of them depend on μ0 only), such that
both BR,a

1 and BR,a
2 have nonzero measure in R

d−1 × (0, +∞).
Now, let us define a one-dimensional kernel Kl(r) := −1

2W (
√
r2 + l2).

Note that for any l > 0, the kernel Kl ∈ C1(R) is even in r , and K ′
l (r) < 0 for

all r > 0. By definition of Sτ , we can rewrite I[Sτμ0] as

I[Sτμ0] = −
∫

(R+)2

∫
R2(d−1)

∫
R2

χ
Mτ (U

h1
x ′ )

(x1)χMτ (U
h2
y′ )

(y1)

K|x ′−y′|(|x1 − y1|)dx1dy1dx ′dy′dh1dh2.
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Thus using the notation in (2.21), I[Sτμ0] can be rewritten as

I[Sτμ0] = −
∫

(R+)2

∫
R2(d−1)

IK|x ′−y′| [χU
h1
x ′

, χ
U

h2
y′

](τ ) dx ′dy′dh1dh2,

and taking its right derivative [and applying Lemma 2.17(a)] yields

−d+

dτ
I[Sτ μ0] ≥

∫
(x ′,h1)∈BR,a

1

∫
(y′,h2)∈BR,a

2

d

dτ
IK|x ′−y′ | [χU

h1
x ′

, χ
U

h2
y′

](τ ) dy′dh2dx ′dh1. (2.29)

By definition of BR,a
1 and BR,a

2 , for any (x ′, h1) ∈ BR,a
1 and (y′, h2) ∈ BR,a

2 ,
we can apply Lemma 2.17(b) to obtain

d+

dτ
IK|x ′−y′| [χU

h1
x ′

, χ
U

h2
y′

](τ ) ≥ 1

128
cwa

3 for any τ ∈ [0, a/4], (2.30)

where cw is the minimum of |K ′
|x ′−y′|(r)| in [a/4, 4R]. By definition of Kl(r),

we have

K ′
|x ′−y′|(r) = −1

2W
′(
√
r2 + |x ′ − y′|2) r√

r2 + |x ′ − y′|2 .

Using |x ′| ≤ R and |y′| ≤ R (due to definition of B1, B2), we have
r√

r2+|x ′−y′|2 ≥ a
20R for all r ∈ [a/4, 4R], hence cw ≥ a

40R minr∈[ a4 ,4R] W ′(r).
Plugging (2.30) (with the above cw) into (2.29) finally yields

−d+
dτ

I[Sτ μ0] ≥ 1

6000
|BR,a

1 ||BR,a
2 | min

r∈[ a4 ,4R]
W ′(r)a4 > 0 for all τ ∈ [0, a/4],

hence we can conclude the desired estimate. ��

2.2.3 Proof of Proposition 2.8

In the statement of Proposition 2.8,we assume thatμ0 is not radially decreasing
up to any translation. Since Steiner symmetrization only deals with symmetriz-
ing in one direction, we will use the following simple lemma linking radial
symmetry with being symmetric decreasing about hyperplanes. Although the
result is standard (see [48, Lemma 1.8]), for the sake of completeness we
include here the details of the proof.

Lemma 2.18 Let μ0 ∈ C(Rd). Suppose for every unit vector e, there exists a
hyperplane H ⊂ R

d with normal vector e, such that μ0 is symmetric decreas-
ing about H. Then μ0 must be radially decreasing up to a translation.
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914 J. A. Carrillo et al.

Proof For i = 1, . . . , d, let ei be the unit vector with i-th coordinate 1 and all
the other coordinates 0.By assumption, for each i , there exists somehyperplane
Hi with normal vector ei , such that μ0 is symmetric decreasing about Hi . We
then represent each Hi as {(x1, . . . , xd) : xi = ai} for some ai ∈ R, and then
define a ∈ R

d as a := (a1, . . . , ad). Our goal is to prove that μ0(· − a) is
radially decreasing.

We first claim that μ0(x) = μ0(2a − x) for all x ∈ R
d . For any hyperplane

H ⊂ R
d , let TH : Rd → R

d be the reflection about the hyperplane H . Since
μ0 is symmetric with respect to H1, . . . , Hd , we have μ0(x) = μ0(THi x) for
x ∈ R

d and all i = 1, . . . , d, thus μ0(x) = μ0(TH1 . . . THd x) = μ0(2a − x).
The claim implies that every hyperplane H passing through a must split

the mass of μ0 into half and half. Denote the normal vector of H by e. By
assumption, μ0 is symmetric decreasing about some hyperplane H ′ with nor-
mal vector e. The definition of symmetric decreasing implies that H ′ is the
only hyperplane with normal vector e that splits the mass into half and half,
hence H ′ must coincide with H . Thusμ0 is symmetric decreasing about every
hyperplane passing through a, hence we can conclude. ��
Proof of Proposition 2.8 Since μ0 is not radially decreasing up to any trans-
lation, by Lemma 2.18, there exists some unit vector e, such that μ0 is not
symmetric decreasing about any hyperplane with normal vector e. In partic-
ular, there is a hyperplane H with normal vector e that splits the mass of
μ0 into half and half, and μ0 is not symmetric decreasing about H . We set
e = (1, 0, . . . , 0) and H = {x1 = 0} throughout the proof without loss of gen-
erality. For the rest of the proof, we will discuss two different casesm ∈ (0, 1]
and m > 1, and construct μ(τ, ·) in different ways.
Case 1: m ∈ (0, 1]. In this case, we simply set μ(τ, ·) = Sτμ0. By Propo-
sition 2.15, I[Sτμ0] is decreasing at least linearly for a short time. Since
continuous Steiner symmetrization preserves the distribution function, even if
S[μ0] = −∞ by itself, we still have the difference S[μ(τ)] − S[μ0] ≡ 0 in
the sense of (2.6). Thus (2.16) holds for all sufficiently small τ > 0. In addi-
tion, (2.18) is automatically satisfied since we assumed that suppμ0 = R

d for
m ∈ (0, 1], and recall that Sτ is mass-preserving by definition.

It then suffices to prove (2.17) for all sufficiently small τ > 0. Let us discuss
the case m = 1 first. By assumption, |∇ logμ0| ≤ C0. For any y ∈ R

d and
τ > 0 we claim that

logμ0(y) − C0τ ≤ logμ(τ, y) ≤ logμ0(y) + C0τ. (2.31)

To see this, let us fix any y = (y1, y′) ∈ R
d . Since logμ0(·, y′) is Lipschitz

with constant C0, for any τ > 0, the following two inequalities hold:

dist(y1, {x1 ∈ R : logμ0(x1, y
′) > logμ0(y1, y

′) + C0τ }) ≥ τ
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Nonlinear aggregation-diffusion equations... 915

and

dist(y1, {x1 ∈ R : logμ0(x1, y
′) < logμ0(y1, y

′) − C0τ }) ≥ τ.

Since the level sets of μ0 are moving with velocity at most 1 (and note that
any level set of μ0 is also a level set of logμ0), we obtain (2.31). It implies

μ0(y)(e
−C0τ − 1) ≤ μ(τ, y) − μ0(y) ≤ μ0(y)(e

C0τ − 1).

We then have |μ(τ, y) − μ0(y)| ≤ 2C0μ0(y)τ for all τ ∈ (0, log 2
C0

) and all

y ∈ R
d .

Now we move on to m ∈ (0, 1), where we aim to show that |μ(τ, y) −
μ0(y)| ≤ C1μ

2−m
0 (y)τ for some C1 for all sufficiently small τ > 0. Using

the assumption |∇ m
1−mμm−1

0 | ≤ C0, the same argument to obtain (2.31) then
gives the following for all y ∈ R

d , τ > 0:

m

1 − m
μm−1
0 (y) − C0τ ≤ m

1 − m
μm−1(τ, y) ≤ m

1 − m
μm−1
0 (y) + C0τ.

Note that μm−1
0 (y) ≥ ‖μ0‖m−1∞ , since μ0 ∈ L∞ and m ∈ (0, 1). Let us set

δ0 = m
2(1−m)C0

‖μ0‖m−1∞ . For any τ ∈ (0, δ0), the left hand side of the above
inequality is strictly positive, thus we have

(
μm−1
0 (y) + C0(1 − m)

m
τ

) 1
m−1 ≤ μ(τ, y) ≤

(
μm−1
0 (y) − C0(1 − m)

m
τ

) 1
m−1

,

(2.32)

and note that our choice of δ0 ensures that

μm−1
0 (y) − C0(1 − m)

m
τ ≥ μm−1

0 (y) − 1

2
‖μ0‖m−1∞ ≥ 1

2
μm−1
0 (y)

for all τ ∈ (0, δ0). Let f (a) :=
(
μm−1
0 (y) + a

) 1
m−1 − μ0(y), which is a

convex and decreasing function in a with f (0) = 0. Using this function f ,
the above inequality (2.32) can be rewritten as

f

(
C0(1 − m)

m
τ

)
≤ μ(τ, y) − μ0(y) ≤ f

(
−C0(1 − m)

m
τ

)
.
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916 J. A. Carrillo et al.

h0

μ0

Sτμ0
S̃τμ0

h0

Mv(h)τ (Uh
x′)

μ0

x1

Fig. 4 Left: A sketch on μ0 (grey), Sτ μ0 (blue) and S̃τ μ0 (red dashed) for a small τ > 0.
Right: In the construction of S̃τ , due to a reduced speed at lower values, a higher value level set
may travel over a lower value level set. The figure illustrates this phenomenon for a large τ > 0

Since f is convex and decreasing, for all |a| ≤ C0(1−m)
m δ0 = 1

2‖μ0‖m−1∞ we
have

| f ′(a)| ≤ 1

|m − 1|
(
1

2
μm−1
0 (y)

) 2−m
m−1 = 2

m−2
m−1

|m − 1|μ0(y)
2−m,

and this leads to

|μ(τ, y) − μ0(y)| ≤ C1μ0(y)
2−mτ for all τ ∈ (0, δ0)

with C1 := 2
m−2
m−1

m C0, which gives (2.17).
Case 2: m > 1. Note that if we set μ(τ, ·) = Sτμ0, then it directly satisfies
(2.16) for a short time, since I[Sτμ0] is decreasing at least linearly for a short
time by Proposition 2.15, and we also have S[Sτμ0] is constant in τ . However,
Sτμ0 does not satisfy (2.17) and (2.18). To solve this problem, we will modify
Sτμ0 into S̃τμ0, where we make the set Uh

x ′ := {x1 ∈ R : μ0(x1, x ′) > h}
travels at speed v(h) rather than at constant speed 1, with v(h) given by

v(h) :=

⎧⎪⎨
⎪⎩
1 h ≥ h0,(

h

h0

)m−1

0 < h < h0,
(2.33)

for some sufficiently small constant h0 > 0 to be determined later. More
precisely, we define μ(τ, ·) = S̃τμ0 as

S̃τμ0(x1, x
′) :=

∫ ∞

0
χMv(h)τ (Uh

x ′ )
(x1)dh (2.34)

with v(h) as in (2.33). For an illustration on the difference between Sτμ0 and
S̃τμ0, see the left figure of Fig. 4.
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Note that S̃τμ0 and Sτμ0 do not necessarily have the same distribution
function. Due to a reduced speed v(h) for h ∈ (0, h0) in the construction
of S̃τ , a higher block may travel over a lower block, as illustrated in the right
figure of Fig. 4.When this happens, the part that is hanging outsidewould “drop
down” as we integrate in h in (2.34), thus changing the distribution function
of S̃τμ0. But, this is not likely (and even impossible) to happen when τ � 1:
indeed, using the regularity assumption |∇μm−1

0 | ≤ C0 and the particular v(h)

in (2.33), one can show that the level sets remain ordered for small enough τ .
But we will not pursue in this direction, since later we will show in (2.38) that
S[S̃τμ0] ≤ S[μ0] for all τ > 0, which is sufficient for us.

Our goal is to show that such μ(τ, ·) satisfies (2.16), (2.17) and (2.18) for
small enough τ . Let us first prove that for any h0 > 0, μ(τ, ·) satisfies (2.17)
and (2.18) for τ ∈ [0, δ1], where δ1 = δ1(m, h0,C0) > 0. To show (2.18),
note that the assumption |∇(μm−1

0 )| ≤ C0 directly leads to the following: for
any x, y ∈ R

d with μ0(x) ≥ h > 0 and μ0(y) = 0, we have that |x − y| ≥
hm−1/C0. This implies that for any connected component Di ⊂ suppμ0,

dist ({μ0 > h} ∩ Di , ∂Di ) ≥ hm−1

C0
for all h > 0. (2.35)

Now define Di,x ′ as the one-dimensional set {x1 ∈ R : (x1, x ′) ∈ Di }. The
inequality (2.35) yields

Mv(h)τ (Uh
x ′ ∩ Di,x ′) ⊂ Di,x ′ for all x ′ ∈ R

d−1, h > 0, τ ≤ hm−1

C0v(h)
,

and note that for any h > 0,we have hm−1/(C0v(h)) ≥ hm−1
0 /C0 by definition

of v(h). Using the above equation, the definition of S̃τ and the fact that Mv(h)τ

is measure-preserving, we have that (2.18) holds for all τ ≤ hm−1
0 /C0.

Next we prove (2.17). Let us fix any y = (y1, y′) ∈ R
d , and denote h =

μ0(y). Using |∇μm−1
0 | ≤ C0, we have that for any λ > 1,

dist(y1,U
λh
y′ ) ≥ (λm−1 − 1)hm−1

C0
.

So we have y1 /∈ Mv(λh)τ
(
Uλh

y′
)
for all τ ≤ (λm−1−1)hm−1

C0v(λh)
, which is uniformly

bounded below by
(λm−1−1)hm−1

0
C0λm−1 due to the fact that v(λh) ≤ (λh/h0)m−1 for

all h. By definition of S̃τ and the fact that μ0(y) = h, the following holds for
all λ > 1:

S̃τ [μ0](y) ≤ λμ0(y) for all τ ≤ (λm−1 − 1)hm−1
0

C0λm−1 .
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Note that there exists c1m > 0 only depending on m, such that λm−1 − 1 ≥
c1m(λ − 1) for all 1 < λ < 2. Hence for all 1 < λ < 2 we have

S̃τ [μ0](y) − μ0(y) ≤ (λ − 1)μ0(y) for τ = c1mh
m−1
0

C02m−1 (λ − 1),

and this directly implies

S̃τ [μ0](y) − μ0(y) ≤ C02m−1

c1mh
m−1
0

μ0(y)τ for all τ ≤ c1mh
m−1
0

C02m−1 . (2.36)

Similarly, for any 0 < η < 1 we have dist(y1, (U
ηh
y′ )c) ≥ (1−ηm−1)hm−1

C0
,

and an identical argument as above gives us

S̃τ [μ0](y) ≥ ημ0(y) for all τ ≤ (1 − ηm−1)hm−1
0

C0ηm−1 .

Now we let c2m > 0 be such that 1 − ηm−1 ≥ c2m(1 − η) for all 1
2 < η < 1.

Hence we have S̃τ [μ0](y)−μ0(y) ≥ −(1−η)μ0(y) for τ = c2mh
m−1
0

C0
(1−η),

which implies

S̃τ [μ0](y) − μ0(y) ≥ − C0

c2mh
m−1
0

μ0(y)τ for all τ ≤ c2mh
m−1
0

2C0
. (2.37)

Combining (2.36) and (2.37), we have that for any h0 > 0, (2.17) holds for
some C1 for all τ ∈ [0, δ1], where both C1 > 0 and δ1 > 0 depend on C0, h0
and m.

Finally, we will show that (2.16) holds for μ(τ) = S̃τ [μ0] if we choose
h0 > 0 to be sufficiently small. First,wepoint out thatS[S̃τμ0] isnot preserved
for all τ . This is because when different level sets are moving at different speed
v(h), we no longer have that Mv(h1)τ (Uh1

x ′ ) ⊂ Mv(h2)τ (Uh2
x ′ ) for all h1 > h2.

Nevertheless, we claim it is still true that

S[S̃τμ0] ≤ S[μ0] for all τ ≥ 0. (2.38)

To see this, note that the definition of S̃τ and the fact that Mv(h)τ is measure
preserving give us

∣∣∣{S̃τμ0 > h}
∣∣∣ ≤ |{μ0 > h}| for all h > 0, τ ≥ 0,
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regardless of the definition of v(h). This implies that
∫

f (S̃τμ0(x))dx ≤∫
f (μ0(x))dx for any convex increasing function f , yielding (2.38).
Due to (2.38) and the fact that E[·] = S[·] + I[·], in order to prove (2.16),

it suffices to show

I[S̃τμ0] ≤ I[μ0] − c0τ for τ ∈ [0, δ0], for some c0 > 0 and δ0 > 0.

(2.39)

Recall that Proposition 2.15 gives that I[Sτμ0] ≤ I[μ0] − cτ for τ ∈ [0, δ]
with some c > 0 and δ > 0. As a result, to show (2.39), all we need is to prove
that if h0 > 0 is sufficiently small, then

∣∣∣I[S̃τμ0] − I[Sτμ0]
∣∣∣ ≤ cτ

2
for all τ. (2.40)

To show (2.40),wefirst split Sτμ0 as the sumof two integrals in h ∈ [h0, ∞)

and h ∈ [0, h0):

Sτμ0(x1, x
′) =

∫ ∞

h0
χMτ (Uh

x ′ )
(x1)dh +

∫ h0

0
χMτ (Uh

x ′ )
(x1)dh

=: f1(τ, x) + f2(τ, x). (2.41)

We then split S̃τμ0 similarly, and since v(h) = 1 for all h > h0 we obtain

S̃τμ0(x1, x
′) = f1(τ, x) +

∫ h0

0
χMv(h)τ (Uh

x ′ )
(x1)dh

=: f1(τ, x) + f̃2(τ, x).

(2.42)

For any τ ≥ 0,wehave‖ f1(τ, ·)‖L∞(Rd ) ≤ ‖μ0‖L∞(Rd ),while‖ f2(τ, ·)‖L∞(Rd )

and ‖ f̃2(τ, ·)‖L∞(Rd ) are both bounded by h0. As for the L1 norm, we have
that ‖ f1(τ, ·)‖L1(Rd ) ≤ ‖μ0‖L1(Rd ), and

‖ f2(τ, ·)‖L1(Rd ) = ‖ f̃2(τ, ·)‖L1(Rd ) =
∫
Rd

min{μ0(x), h0}dx =: mμ0(h0),

where mμ0(h0) approaches 0 as h0 ↘ 0.
Also, since v(h) ≤ 1, we know that for each τ ≥ 0, there is a trans-

port map T (τ, ·) : [0, ∞) × R
d → R

d with supx∈Rd |T (τ, x) − x | ≤
2τ , such that T (τ, ·)# f2(τ, ·) = f̃2(τ, ·) (that is,

∫
f̃2(τ, x)ϕ(x)dx =∫

f2(τ, x)ϕ(T (τ, x))dx for any measurable function ϕ). Indeed, since the
level sets of f2 are traveling at speed 1 and the level sets of f̃2 are traveling
with speed v(h), for each τ we can find a transport plan between them with
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maximal displacement L∞ distance at most 2τ in its support. Let us remark
that since these densities are both in L∞, there is some optimal transport map
T̃ for the ∞-Wasserstein such that |T̃ (τ, x)− x | ≤ 2τ . Although existence of
an optimal map is known [38], we just need a transport map with this property
below.

Using the decompositions (2.41), (2.42) and the definition ofI[·], we obtain,
omitting the τ dependence on the right hand side,

∣∣∣I[S̃τμ0] − I[Sτμ0]
∣∣∣ ≤
∣∣∣∣
∫

f2(W ∗ f1)dx −
∫

f̃2(W ∗ f1)dx

∣∣∣∣︸ ︷︷ ︸
=:A1(τ )

+ 1

2

∣∣∣∣
∫

f2(W ∗ f2)dx −
∫

f̃2(W ∗ f̃2)dx

∣∣∣∣︸ ︷︷ ︸
=:A2(τ )

,

and we will bound A1(τ ) and A2(τ ) in the following. For A1(τ ), denote
�(τ, ·) =: W ∗ f1(τ, ·), and using the L∞, L1 bounds on f1 and the
assumptions (K2),(K3), we proceed in the same way as in (2.4) to obtain
that ‖∇�‖L∞(Rd ) ≤ C = C(‖μ0‖L∞(Rd ), ‖μ0‖L1(Rd ),Cw, d).

Using that T (τ, ·)# f2(τ, ·) = f̃2(τ, ·), we can rewrite A1(τ ) as

A1(τ ) =
∣∣∣∣
∫

f2(x)
(
�(x) − �(T (τ, x))

)
dx

∣∣∣∣
≤ ‖ f2(τ )‖L1(Rd ) sup

x∈Rd
|�(x)−�(T (τ, x))|≤mμ0(h0)‖∇�‖L∞(Rd )2τ

≤ mμ0(h0)C(‖μ0‖L∞(Rd ), ‖μ0‖L1(Rd ),Cw, d)τ,

where the coefficient of τ can be made arbitrarily small by choosing h0 suf-
ficiently small. To control A2(τ ), we first use the identity

∫
f (W ∗ g)dx =∫

g(W ∗ f )dx to bound it by

A2(τ ) ≤
∣∣∣∣
∫

f2(W ∗ f2)dx −
∫

f̃2(W ∗ f2)dx

∣∣∣∣
+
∣∣∣∣
∫

f2(W ∗ f̃2)dx −
∫

f̃2(W ∗ f̃2)dx

∣∣∣∣ ,

and both terms can be controlled in the same way as A1(τ ), since both �2 :=
W ∗ f2 and �̃2 := W ∗ f̃2 satisfy the same estimate as �. Combining the
estimates for A1(τ ) and A2(τ ), we can choose h0 > 0 sufficiently small,
depending on μ0 and W , such that Eq. (2.40) would hold for all τ , which
finishes the proof. ��
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2.3 Proof of Theorem 2.2

Proof Towards a contradiction, assume there is a stationary state ρs that is not
radially decreasing. Due to Lemma 2.3, we have that ρs ∈ C(Rd) ∩ L1+(Rd),
and | m

m−1∇ρm−1
s | ≤ C0 in supp ρs for some C0 > 0 (and if m = 1, it

becomes |∇ log ρs | ≤ C0). In addition, if m ∈ (0, 1], the same lemma also
gives supp ρs = R

d . This enables us to apply Proposition 2.8 to ρs , hence
there exists a continuous family of μ(τ, ·) with μ(0, ·) = ρs and constants
C1 > 0, c0 > 0, δ0 > 0, such that the following holds for all τ ∈ [0, δ0]:

E[μ(τ)] − E[ρs] ≤ −c0τ, (2.43)
|μ(τ, x) − ρs(x)| ≤ C1ρs(x)

max{1,2−m}τ for all x ∈ R
d , (2.44)∫

Di

(μ(τ, x) − ρs(x))dx = 0 for any connected component Di of supp ρs . (2.45)

Next we will use (2.44) and (2.45) to directly estimate E[μ(τ)] − E[ρs], and
our goal is to show that there exists some C2 > 0, such that

∣∣E[μ(τ)] − E[ρs]
∣∣ ≤ C2τ

2 for τ sufficiently small. (2.46)

We then directly obtain a contradiction between (2.43) and (2.46) for suffi-
ciently small τ > 0.

Let g(τ, x) := μ(τ, x) − ρs(x). Due to (2.44), we have |g(τ, x)| ≤
C1ρs(x)max{1,2−m}τ for all x ∈ R

d and τ ∈ [0, δ0]. From now on, we set
δ0 to be the minimum of its previous value and (2C1(1+ ‖ρs‖∞))−1. Such δ0
ensures that supp g(τ, ·) ⊂ supp ρs and |g(τ, x)/ρs(x)| ≤ 1

2 for all τ ∈ [0, δ0].
Since the energy E takes different formulas for m �= 1 and m = 1, we will

treat these two cases differently. Let us startwith the casem ∈ (0, 1)∪(1, +∞).
Using the notation g(τ, x), we have the following: (where in the integrand we
omit the x dependence, due to space limitations)

E[μ(τ)] − E[ρs]=
∫ (

(ρs + g(τ ))m − ρm
s

)
m − 1

dx

+ 1

2

∫
(ρs + g(τ ))

(
W ∗ (ρs + g(τ ))

)− ρs(W ∗ ρs)dx

=
∫
supp ρs

ρm
s

m − 1

((
1 + g(τ )

ρs

)m
− 1

)
︸ ︷︷ ︸

:=T (τ,x)

dx

+
∫ [

g(τ )(W ∗ ρs) + 1

2
g(τ )(W ∗ g(τ ))

]
dx . (2.47)

123



922 J. A. Carrillo et al.

Recall that for all |a| < 1/2, we have the elementary inequality

∣∣(1 + a)m − 1 − ma
∣∣ ≤ C(m)a2 for some C(m) > 0.

Since for all x ∈ supp ρs and τ ∈ [0, δ0] we have |g(τ, x)/ρs(x)| ≤ 1
2 , we

can replace a by g(x)/ρs(x) in the above inequality, then multiply 1
|m−1|ρ

m
s

to both sides to obtain the following (with C2(m) = C(m)/|m − 1|):
∣∣∣∣T (τ, x) − m

m − 1
g(τ, x)ρs(x)

m−1
∣∣∣∣ ≤ C2(m)ρm−2

s g(τ )2.

Applying this to (2.47), we have the following for all τ ≤ min{δ0,C1/2}:
∣∣E[μ(τ)] − E[ρs]

∣∣ ≤
∣∣∣∣
∫
supp ρs

g(τ )

(
m

m − 1
ρm−1
s + W ∗ ρs

)
dx

∣∣∣∣
+
∣∣∣∣12
∫

g(τ )(W ∗ g(τ ))dx

∣∣∣∣
+ C2(m)

∣∣∣∣
∫

ρm−2
s g(τ )2dx

∣∣∣∣
=: I1 + I2 + I3.

Sinceρs is a steady state solution, from (2.11)wehave m
m−1ρ

m−1
s +W∗ρs = Ci

in each connected component Di ⊂ supp ρs , hence I1 ≡ 0 for all τ ∈ [0, δ0]
due to (2.45) and the definition of g(τ, ·).

For I2 and I3, since |g(τ, x)| ≤ C1ρs(x)max{1,2−m}τ for τ ∈ [0, δ0], for
m > 1 it becomes |g(τ, x)| ≤ C1ρs(x)τ , thus we directly have

I2 ≤ 1

2
C2
1τ

2
∫

|ρs(W ∗ ρs)|dx ≤ Aτ 2,

I3 ≤ C2(m)C2
1τ

2
∫

ρm
s dx ≤ Aτ 2,

for some A > 0 depending on ‖ρs‖1, ‖ρs‖∞,m and d (where we use (2.4)
and ρsω(1 + |x |) ∈ L1 to control I2). For m ∈ (0, 1), the bound of g implies
|g(τ, x)| ≤ C1‖ρs‖1−m∞ ρs(x)τ . Plugging this into I2 gives the same bound as
above (with a different A). And for I3, plugging in |g(τ, x)| ≤ C1ρs(x)2−mτ

gives

I3 ≤ C2(m)C2
1τ

2
∫

ρ2−m
s ≤ Aτ 2,
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where in the last inequality we used that 2−m > 1 and ρs ∈ L1∩L∞. Putting
them together finally gives

∣∣E[μ(τ)]−E[ρs]
∣∣ ≤ 2Aτ 2 for all τ ≤ δ0, finishing

the proof for m ∈ (0, 1) ∪ (1, +∞).
Next we move on to the case m = 1. Using the notation g(τ, x), the differ-

ence E[μ(τ)] − E[ρs] can be rewritten as follows: (where we again omit the
x dependence in the integrand)

E[μ(τ)] − E[ρs ] =
∫ [

(ρs + g(τ )) log(ρs + g(τ )) − ρs log ρs

+g(τ )(W ∗ ρs) + 1

2
g(τ )(W ∗ g(τ ))

]
dx

=
∫

g(τ ) (log ρs + W ∗ ρs) dx +
∫

(ρs + g(τ )) log

(
1 + g(τ )

ρs

)
dx

+ 1

2

∫
g(τ )(W ∗ g(τ ))dx

=: J1 + J2 + J3.

Again, we have J1 = 0 since
∫
g(τ )dx = 0, and log ρs + W ∗ ρs = C in

R
d . J3 is the same term as I2, thus again can be controlled by Aτ 2. Finally it

remains to control J2. Let us break J2 into

J2 =
∫

ρs log

(
1 + g(τ )

ρs

)
dx +

∫
g(τ ) log

(
1 + g(τ )

ρs

)
dx =: J21 + J22.

For J22, using the inequality log(1 + a) < a for all a > 0, we have

J22 ≤
∫

g(τ )2

ρs
dx ≤

∫
C2
1τ

2ρsdx ≤ C2
1‖ρs‖1τ 2, (2.48)

where we use (2.44) in the second inequality. To control J21, due to the ele-
mentary inequality

|log (1 + a) − a| ≤ Ca2 for all a > 0

for some universal constant C , letting a = g(τ )
ρs

and apply it to J21 gives

∣∣∣J21 −
∫

g(τ )dx
︸ ︷︷ ︸
=0 by (2.45)

∣∣∣ ≤ C
∫

g(τ )2

ρs
dx ≤ CC2

1‖ρs‖1τ 2,

where the last inequality is obtained in the samewayas (2.48).Combining these
estimates above gives |E[μ(τ)] − E[ρs]| ≤ Aτ 2 for some A > 0 depending
on ‖ρs‖1, ‖ρs‖∞ and d, which completes the proof. ��
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2.4 A shortcut for equations with a gradient flow structure

In this subsection, wewould like to discuss a shortcut for proving Theorem 2.2,
once the first order decay under continuous Steiner symmetrization in Propo-
sition 2.15 has been established, if the Eq. (1.1) has a rigorous gradient flow
structure. Over the past two decades, it was discovered that many evolution
PDEs have a Wasserstein gradient flow structure including the heat equation,
porous medium equation, and the aggregation-diffusion Eq. (1.1) if the kernel
W has certain convexity properties, see [2,34,42,55,76]. More precisely, for
(1.1), ifW is known to beλ-convex, then given anyρ0 ∈ P2(R

d) (space of non-
negative probability measures with finite second-moment) with E[ρ0] < ∞,
there exists a unique gradient flow ρ(t) of the free energy functional E[ρ0]
in the space P2(R

d) endowed by the 2-Wasserstein distance. In addition, the
gradient flow coincides with the unique weak solution if the velocity field has
the necessary integrability conditions.

The λ-convexity of the potential W does not hold in the generality of our
assumptions (K1)–(K4). However, the λ-convexity assumption onW has been
recently relaxed in the followingworks for the particular, but important, case of
the attractive Newtonian kernel. Craig [42] has shown that the gradient flow is
well-posed if the energy E is ξ -convex, where ξ is a modulus of convexity. Car-
rillo and Santambrogio [35] have recently shown that for (1.1) with attractive
Newtonian potential, for any ρ0 in L∞(Rd) ∩P2(R

d), there is a local-in-time
gradient flow solution. The authors show that there are local in time L∞ bounds
at the discrete variational level allowing for local in time well defined gradient
flow solutions. Furthermore, this gradient flow solution is unique among a
large class of weak solutions due to the earlier results [32]. There, it was also
shown that the free energy functional E is ξ -convex for m ≥ 1 − 1

d in the set
of bounded densities L∞(Rd) ∩ P2(R

d) with a given fixed bound allowing
the use of the recent theory of ξ -convex gradient flows in [42]. Summarizing,
the recent results for the Newtonian attractive kernel [32,35,42] allow for a
rigorous gradient flow structure of the Newtonian attractive kernel case for
m ≥ 1 − 1

d with initial data in L∞(Rd) ∩ P2(R
d).

In short we now know two particular more restrictive classes of potentials
than the assumptions (K1)–(K4), including the Newtonian kernel case, for
which a rigorous gradient flow theory has been developed for (1.1). Next we
will show that under a rigorous gradient flow structure, once we use con-
tinuous Steiner symmetrization to obtain Proposition 2.15, it almost directly
leads to radial symmetry via the following shortcut. In particular, Proposi-
tion 2.8 is not needed. Below is the statement and proof of the new proposition
that we include for the sake of completeness. Note that it is weaker than
Theorem 2.2, since Wasserstein gradient flow requires solutions to have a
finite second moment, and furthermore for the existence of the gradient flow
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solutions we need to assume m ≥ 1 − 1
d . We will discuss this difference in

Remark 2.20.

Proposition 2.19 Assume that W is such that (1.1) has a local-in-time unique
gradient flow solution. Let ρs ∈ L∞(Rd) ∩ P2(R

d) be a stationary solution
of (1.1) with E[ρs] being finite. Then ρs must be radially decreasing after a
translation.

Proof Towards a contradiction, assume there is a stationary state ρs that is
not radially decreasing after any translation. As before, Lemma 2.3 yields
that ρs ∈ C(Rd) ∩ L1+(Rd). Applying Lemma 2.18 to ρs allows us to find
a hyperplane H that splits the mass of ρs into half and half, but ρs is not
symmetric decreasing about H . Without loss of generality assume H = {x1 =
0}. Applying Proposition 2.15 to ρs and using the fact that the Lm norm is
conserved under the continuous Steiner symmetrization Sτ , we directly have
that

E[Sτ ρs] ≤ E[ρs] − c0τ for all τ ∈ [0, δ0], (2.49)

where c0, δ0 are strictly positive constants that depend on ρs . In addition, since
the continuous Steiner symmetrization Sτ gives an explicit transport plan from
ρs to Sτ ρs , where each layer is shifted by no more than distance τ , we have
W∞(ρs, Sτ ρs) ≤ τ , thus

W2(ρs, S
τ ρs) ≤ W∞(ρs, S

τ ρs) ≤ τ for all τ > 0. (2.50)

Using (2.49) and (2.50), the metric slope |∂E |(ρs) as defined in [2, Defini-
tion 1.2.4] satisfies

|∂E |(ρs) = lim sup
ρ→ρs

(E[ρs] − E[ρ])+
W2(ρs, ρ)

≥ lim sup
τ→0

(E[ρs] − E[Sτ ρs])+
W2(ρs, Sτ ρs)

≥ c0.

On the other hand, the local in time gradient flow solutionρ(t)with initial solu-
tion ρs satisfies an Evolution Differential Inequality (EVI) (see [42, Definition
2.10] when W is the Newtonian kernel), then arguing as in [3, Proposition
3.6], see also [32], we have that the following energy dissipation inequality is
satisfied, for all t ≥ 0

E(ρ(t)) − E(ρs) ≤ −1

2

∫ t

0
|∂E |2(ρ(τ ))dτ − 1

2

∫ t

0
|ρ′(τ )|2dτ (2.51)

both for λ-convex potentials, actually (2.51) holds with equality, and for
the Newtonian attractive potential. This is a consequence of the map t →
|∂E |(ρ(t)) being decreasing and lower semicontinuous, see for instance [2,
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Theorem 2.4.15] in the λ-convex case and [42, Theorem 3.12] in the Newto-
nian kernel case. Since ρ(t) ≡ ρs is a gradient flow solution, plugging it into
(2.51) yields that the left hand side is 0, whereas the right hand side is less
than −1

2c
2
0t which is negative for all t > 0, a contradiction. ��

Remark 2.20 The assumption that ρs is a probability measure does not create
any actual restriction. If ρs is a stationary solution of (1.1) with mass M0 �= 1,
we can simply apply Theorem 2.19 to ρ̃s := ρs

M0
, which has mass 1, and it is

a stationary solution of (1.1) with some positive coefficients multiplied to the
two terms on the right hand side. However, the assumption that ρs has finite
second moment (which comes in the definition of P2(R

d)) makes it more
restrictive than Theorem 2.2, which only requires ω(1 + |x |)ρs ∈ L1(Rd).
Moreover, the assumption of the existence of a local-in-time unique gradient
flow solution implies the more restrictive condition on the nonlinear diffusion
m ≥ 1 − 1

d in order to be proved with the available literature [3,42].

At the end of this subsection, let us point out that for our main application
in this work, where W = −N is the attractive Newtonian kernel modulo
translation and m > 1, we could have used this shortcut to show that all
stationary solution ρs ∈ L1+(Rd) ∩ L∞(Rd) with finite second moment must
be radially decreasing. However the longer approach (via Proposition 2.8 and
Theorem 2.2) has a larger interest for two reasons. One is that as discussed in
Remark 2.20, Theorem 2.2 proves radial symmetry in a more general class of
stationary solutions and more general nonlinear diffusions. Another reason is
that the longer approach does not rely on any convexity assumption onW , thus
it works even if the equation does not have a rigorous gradient flow structure.
Even more, part of the authors have also recently shown that this longer proof
can be generalized to kernels that are more singular than Newtonian [31] for
which a rigorous gradient flow theory is missing.

2.5 Including a potential term

In this subsection, we consider the aggregation-diffusion equation with an
extra drift term given by a potential V (x):

∂tρ = �ρm + ∇ · (ρ∇(W ∗ ρ + V )) x ∈ R
d , t ≥ 0 (2.52)

where we assume that m > 0, V (x) ∈ C1(Rd) is radially symmetric, and
V ′(r) > 0 for all r > 0.

For this equation, its stationary solution is defined in the same way as Def-
inition 2.1, with (2.1) replaced by ∇ρm

s = −ρs∇(ψs + V ). We point out that
Lemma 2.3 still holds, except that the right hand sides of (2.7) and (2.8) are
now replaced by an x-dependent boundC+|∇V (x)|. From its proof, we know
that if ρs is a stationary solution, then
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m

m − 1
ρm−1
s + ρs ∗ W + V = Ci in supp ρs,

where Ci may take different values in different components. As before, if
m = 1 then m

m−1ρ
m−1
s is replaced by log ρs ; and if 0 < m ≤ 1 we again have

that supp ρs = R
d .

Due to the extra potential term, the energy functional E[ρ] is now given by
S[ρ] + I[ρ] + V[ρ], with the extra potential energy V[ρ] := ∫

ρVdx . We
startwith a simple observation that the potential energy is non-increasing under
continuous Steiner symmetrization, a consequence of properties of continuous
Steiner symmetrization in [18].

Lemma 2.21 Let V ∈ C(Rd) be radially symmetric and non-decreasing in |x |.
Let μ ∈ L1+(Rd) ∩ L∞(Rd) be such that

∫
μVdx < ∞. Then

∫
Sτ [μ]Vdx

is non-increasing for all τ > 0.

Proof For any n ∈ N+, let ϕn(x) := max{0, V (n) − V (x)}. (Here we define
V (n) := V (x)||x |=n by a slight abuse of notation.) Note that suppϕn ⊂
B(0, n), and is non-increasing in |x |. By the Hardy–Littlewood inequality
for continuous Steiner symmetrization [18, Lemma 4], we have

∫
Rd

Sτ [μ]ϕndx =
∫
Rd

Sτ [μ]Sτ [ϕn]dx ≥
∫
Rd

μϕndx for all τ ≥ 0, n ∈ N
+

(2.53)

Note that−ϕn = min{V (n), V (x)}−V (n).Since
∫
Sτ [μ]dx = ∫ μdx , (2.53)

is equivalent with

∫
Rd

Sτ [μ]min{V (x), V (n)}dx

≤
∫
Rd

μmin{V (x), V (n)}dx for all τ ≥ 0, n ∈ N
+.

Sending n → ∞, the above inequality becomes
∫
Sτ [μ]Vdx ≤ ∫ μVdx for

all τ ≥ 0. The semigroup property of Sτ then gives us the desired result. ��

The above lemma gives that d+
dτ

∫
Sτ [μ]Vdx ≤ 0, but it turns out that we

have to improve it into a strict inequality if μ is not symmetric decreasing
about H = {x1 = 0}, which we prove below.
Lemma 2.22 Let V ∈ C(Rd) be radially symmetric and strictly increasing in
|x |. Assume μ ∈ L1+(Rd) ∩ L∞(Rd) is such that

∫
μVdx < ∞, and μ is not

symmetric decreasing about H = {x1 = 0}. Then d+
dτ

∫
Sτ [μ]Vdx

∣∣
τ=0 < 0.
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As a consequence, for such μ, there is a constant c0 > 0 (depending on μ and
V ) such that for small τ > 0,

∫
Sτ [μ]Vdx ≤

∫
μ Vdx − c0τ.

Proof Recall that for each x ′ ∈ R
d−1, h ∈ R

+, the set Uh
x ′ is an at most

countable union of subintervals. Without loss of generality we assume the
subintervals do not share a common endpoint; if so, we add a point to merge
them into one interval. Each subinterval can be written in the form I (c, r) =
(c − r, c + r). Since μ is not symmetric decreasing about H , some of these
subintervals must have their center not at 0 for some x ′, h. This motivates us
to define the set Bδ ⊂ R

d−1 × R
+ for 0 < δ � 1:

Bδ := {(x ′, h) ∈ R
d−1 × R

+ : |x ′| ≤ δ−1, and Uh
x ′

has a subinterval I (c, r) with |c|, r ∈ [δ, δ−1]}.
The assumption of μ implies that |Bδ| > 0 for sufficiently small δ > 0.

By Definition 2.12,
∫
Sτ [μ]Vdx can be written as

∫
Sτ [μ]Vdx =

∫
R+

∫
Rd−1

∫
R

χMτ (Uh
x ′ )

(x1)V (x1, x
′)dx1dx ′dh.

(2.54)

Now let us investigate the innermost integral. For any open set U ⊂ R, let us
define

�(τ ;U, x ′) :=
∫
R

χMτ (U )(x1)V (x1, x
′)dx1.

With this notation, the innermost integral in (2.54) becomes �(τ ;Uh
x ′, x ′).

To estimate d+
dτ

�(τ ;Uh
x ′, x ′)|τ=0, let us start with an easier estimate

d+
dτ

�(τ ;U, x ′)|τ=0 when U is a single interval I (c, r). If c = 0, clearly
d+
dτ

�(τ ;U, x ′)
∣∣
τ=0 = 0. If c �= 0 (WLOG assume c < 0), then Mτ (U ) =

I (c + τ, r) for sufficiently small τ > 0, thus

d+

dτ
�(τ ;U, x ′)

∣∣∣
τ=0

= V (c + r, x ′) − V (c − r, x ′) < 0,

where we use |c+r | < |c−r | in the last inequality, which follows from c < 0,
and actually we have |c − r | − |c + r | ≥ min{2|c|, 2r}. And if c, r, x ′ satisfy
|c|, r ∈ [δ, δ−1] and |x ′| ≤ δ−1, we have the quantitative estimate

d+

dτ
�(τ ;U, x ′)

∣∣∣
τ=0

≤ −Cδ < 0,
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where Cδ is given by

Cδ := inf
a1,a2,b∈R

{
V

(√
a21 + b2

)
− V

(√
a22 + b2

)
:

|a1| − |a2| ≥ 2δ, |a1|, |a2| ≤ 2δ−1, |b| ≤ δ−1} ,

where we denote V (x) = V (|x |) by a slight abuse of notation. The strict
positivity of Cδ follows from the fact that V (r) is strictly increasing in r for
r ≥ 0, as well as the compactness of the set {|a1| − |a2| ≥ 2δ, |a1|, |a2| ≤
2δ−1, |b| ≤ δ−1}.

The above argument immediately leads to the crude estimate

d+

dτ
�(τ ;Uh

x ′, x ′)|τ=0 ≤ 0 for all (x ′, h) ∈ R
d−1 × R+

aswe take the sumof the estimate d+
dτ

�(τ ;U, x ′)|τ=0 ≤ 0 over all the subinter-
valsU ⊂ Uh

x ′ . In addition, if |x ′| ≤ δ−1 andUh
x ′ has a subinterval I (c, r) with

|c|, r ∈ [δ, δ−1], we have the quantitative estimate d+
dτ

�(τ ;Uh
x ′, x ′)|τ=0 ≤

−Cδ < 0. By definition of Bδ at the beginning of this proof, we have

d+

dτ
�(τ ;Uh

x ′, x ′)
∣∣∣
τ=0

≤ −Cδ < 0 for all (x ′, h) ∈ Bδ,

thus

d+
dτ

∫
Sτ [μ]Vdx

∣∣∣
τ=0

=
∫
R+

∫
Rd−1

d+
dτ

�(τ ;Uh
x ′ , x ′)

∣∣∣
τ=0

dx ′dh ≤ −Cδ |Bδ | < 0,

finishing the proof. ��
Our goal of this subsection is to show that the radial symmetry result in

Theorem 2.2 can be generalized to (2.52) for certain classes of potential V .
We will work with one of the following two classes of V :

(V1) 0 < V ′(r) ≤ C for some C for all r > 0.
(V2) V ′(r) > 0 for all r > 0, and V ′(r) → +∞ as r → +∞.
In the following theorem we prove radial symmetry of stationary solutions

under assumption (V1) for all m > 0, and under assumption (V2) for m > 1.
We expect that whenm ∈ (0, 1], it should be possible to refine some estimates
in the proof andobtain symmetry for awider class than (V1).Wewill not pursue
this direction for presentation simplicity, and we leave further generalizations
to interested readers.

Theorem 2.23 Assume that W satisfies (K1)–(K4) and m > 0. Let ρs ∈
L1+(Rd) ∩ L∞(Rd) satisfy ω(1 + |x |)ρs ∈ L1(Rd) and ρsV ∈ L1(Rd).
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Assume that ρs is a non-negative stationary state of (2.52) in the sense of
Definition 2.1, with (2.1) replaced by ∇ρm

s = −ρs∇(ψs + V ). Then if V
satisfies (V1), or if V satisfies (V2) in addition to m > 1, then ρs is radially
decreasing about the origin.

Proof Note that Lemma 2.3 still holds with a potential V , except that right
hand sides of (2.7) and (2.8) are now replaced by an x-dependent bound
C + |∇V (x)|, which is uniformly bounded in x under (V1). And under the
assumptions (V2) and m > 1, we will prove in Lemma 2.24 that ρs must be
compactly supported. Thus in both cases, the right hand sides of (2.7) and
(2.8) are still uniformly bounded in x in supp ρs .

The rest of the proof follows a similar approach as Theorem2.2 and Proposi-
tion 2.8,withE including an extra potential energyV[ρ] := ∫ ρVdx .However,
some crucial modifications in the proof of Proposition 2.8 are needed, which
we highlight below.

First, note that with a potential V , we will prove radial symmetry about
the origin, rather than up to a translation. For this reason, we take an arbitrary
hyperplane H passing through the origin, and aim to prove that ρs is symmetric
decreasing about H . (WLOGwe let H = {x1 = 0}.) Since H does not split the
mass of ρs into half-and-half, it is possible that for all x ′ ∈ R

d−1 and h > 0,
every line segment in Uh

x ′ has its center lying on one side of H . Therefore,
the estimate in Proposition 2.15 might fail for ρs , and all we have is the crude
estimate

I[Sτ ρs] − I[ρs] ≤ 0. (2.55)

Despite this weaker estimate in the interaction energy, we will show that all
3 estimates of Proposition 2.8 still hold, if we define μ(·, τ ) in the same way
as in its proof. Clearly, (2.17) and (2.18) remain true since μ(·, τ ) is defined
the same as before. We claim that (2.16) still holds, but with a different reason
as before: the coefficient c0 > 0 used to come from contribution from the
interaction energy via Proposition 2.15, but now it comes from the potential
energy. To see this, consider the following two cases.

Case 1:m ∈ (0, 1]. Combining (2.55), Lemma 2.22withS[μ(τ)]−S[ρs] ≡
0 (where the difference is defined in the sense of (2.6)), we again have (2.16)
for some c0 > 0 for all sufficiently small τ > 0.

Case 2: m > 1. In this case, recall that μ(τ, ·) = S̃τ [μ(0, ·)], where
μ(0, ·) = ρs and S̃τ is the continuous Steiner symmetrization which “slows-
down” at height h ∈ (0, h0). From the proof of Lemma 2.22, we know that
if Bδ has a positive measure, then Bδ ∩ {(x ′, h) : h > h0} also has a positive
measure for all sufficiently small h0 > 0, thus Lemma 2.22 still holds for
μ(τ) = S̃τ [μ0] if h0 is sufficiently small, leading to
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V[μ(τ)] − V[ρs] ≤ −cτ for some c > 0 for all sufficiently small τ > 0.

In addition, for sufficiently small h0 we still have (2.40) (where we fix c to be
the constant from the above equation), and combining it with (2.55) gives

I[μ(τ)] − I[ρs] ≤ cτ

2
,

and adding them together with (2.38) gives (2.16).
Once we obtain Proposition 2.8, the rest of the proof follows closely the

proof of Theorem 2.2, except the following minor changes. With an extra
potential energy in E , the right hand side of (2.47) has an additional term∫
g(τ )Vdx . As a result, I1 has a different definition

I1 =
∣∣∣∣
∫
supp ρs

g(τ )

(
m

m − 1
ρm−1
s + W ∗ ρs + V

)
dx

∣∣∣∣ ,

which is still 0, since the equation for stationary solution now becomes

m

m − 1
ρm−1
s + ρs ∗ W + V = Ci in supp ρs .

The m = 1 case is done with a similar modification, where J1 is now∫
g(τ ) (log ρs + W ∗ ρs + V ) dx , and again we have J1 = 0 since ρs is sta-

tionary. Finally,weobtain the samecontradiction as in the proof ofTheorem2.2
if ρs is not symmetric decreasing about H . And since H is an arbitrary hyper-
plane through the origin, we have that ρs is radially decreasing about the origin.

��
Finally we state and prove the lemma used in the proof of Theorem 2.23,

which shows all stationary solutions must be compactly supported if m > 1
and V satisfies (V2).

Lemma 2.24 Assume that m > 1, W satisfies (K1)–(K4), and V satisfies
(V2). Let ρs ∈ L1+(Rd) ∩ L∞(Rd) satisfy ω(1 + |x |)ρs ∈ L1(Rd). Assume
that ρs is a non-negative stationary state of (2.52) in the sense of Definition
2.1, with (2.1) replaced by ∇ρm

s = −ρs∇(ψs + V ). Then ρs is compactly
supported.

Proof With a potential term, we have that

m

m − 1
ρm−1
s + ρs ∗ W + V = Ci in supp ρs, (2.56)

where Ci takes different values in different connected components of supp ρs .
By a similar computation as (2.4) (with W replaced by min{W, 0}), we have
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ρs ∗ W ≥ −C(‖ρs‖1, ‖ρs‖∞,W ). Thus the first two terms of (2.56) are uni-
formly bounded below. As a result, every connected component D of supp ρs
must be bounded: if not, the left hand side would be unbounded in D due to
lim|x |→∞ V (|x |) = ∞, contradicting with (2.56).

Note that every connected component being bounded does not imply that
supp ρs is bounded: theremaybe a countable number of connected components
going to infinity. We claim that there is some R(‖ρs‖1, ‖ρs‖∞,W, V ) > 0,
such that every connected component D must satisfy that D ∩ B(0, R) �= ∅.
As we will see later, this will help us control the outmost point of D.

If 0 ∈ D, then clearly D∩ B(0, R) �= ∅. If 0 /∈ D, we find some unit vector
ν ∈ R

d , such that the ray starting at origin with direction ν has a non-empty
intersection with D. Let t0 = inf{t > 0 : tν ∈ D}, and let x0 = t0ν. We
take a sequence of points (tn)∞n=1 such that tn ↘ t0 and tnν ∈ D, and denote
xn = tnν. Since xn ∈ D and x0 ∈ ∂D, the left hand side of (2.56) takes the
same constant value Ci at x0 and all xn . As a result, for all n ≥ 1 we have

m
m−1

(
ρm−1
s (xn) − ρm−1

s (x0)
)

tn − t0
+ (ρs ∗ W )(xn) − (ρs ∗ W )(x0)

tn − t0

+V (xn) − V (x0)

tn − t0
= 0.

Note that the first term is non-negative since ρs(x0) = 0 (which follows from
x0 ∈ ∂D and ρs ∈ C(Rd)). The second term converges to∇(ρs ∗W ) ·ν, whose
absolute value is bounded by C(‖ρs‖1, ‖ρs‖∞,W ) by (2.2). The third term
converges to ∇V (x0) · ν = V ′(t0). Putting the three estimates together gives
that

V ′(t0) ≤ C(‖ρs‖1, ‖ρs‖∞,W ),

thus assumption (V2) gives that t0 ≤ R(‖ρs‖1, ‖ρs‖∞,W, V ), finishing the
proof of the claim.

Finally, we will show that D ∩ B(0, R) �= ∅ implies the outmost point of
D cannot get too far. Take any x1 ∈ D ∩ B(0, R), and let x2 be the outmost
point of D. Taking the difference of (2.56) at x2 and x1 gives

V (x2) − V (R) ≤ V (x2) − V (x1) = m

m − 1
ρm−1
s

∣∣∣x1
x2

+ (ρs ∗ W )

∣∣∣x1
x2

.

Due to (2.4), we bound the right hand side by C(‖ρs‖1, ‖ρs‖∞, ‖ω(1 +
|x |)ρs‖1,W ) + ω(1 + |x2|)‖ρs‖1. Note that the left hand grows superlin-
early in |x2| due to (V2), whereas ω(1 + |x2|) at most grows linearly in |x2|
by assumption (K3) on W . This leads to
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|x2| ≤ C(‖ρs‖1, ‖ρs‖∞, ‖ω(1 + |x |)ρs‖1,W, V ),

which completes the proof. ��

3 Existence of global minimizers

In Sect. 2, we showed that if ρs ∈ L1+(Rd) ∩ L∞(Rd) is a stationary state of
(1.1) in the sense of Definition 2.1 and it satisfiesω(1+|x |)ρs ∈ L1(Rd), then
it must be radially decreasing up to a translation. This section is concernedwith
the existence of such stationary solutions. Namely, under (K1)–(K4) and one
of the extra assumptions (K5) or (K6) below, we will show that for any given
mass, there indeed exists a stationary solution satisfying the above conditions.
We will generalize the arguments of [28] to show that there exists a radially
decreasing global minimizer ρ of the functional (2.5) given by

E[ρ] = 1

m − 1

∫
Rd

ρm dx + 1

2

∫
Rd

∫
Rd

W (x − y) ρ(x)ρ(y) dx dy

over the class of admissible densities

YM :=
{
ρ ∈ L1+(Rd) ∩ Lm(Rd) : ‖ρ‖L1(Rd ) = M,∫

R2
xρ(x) dx = 0, ω(1 + |x |) ρ(x) ∈ L1(Rd)

}
,

and with the potential satisfying at least (K1)–(K4). Note that the condition
on the zero center of mass has to be understood in the improper integral sense,
i.e.

∫
Rd

xρ(x) dx = lim
R→∞

∫
|x |<R

xρ(x) dx = 0

since we do not assume that the first moment is bounded in the class YM .
We emphasize that from now on we will work in the dominated regime with
degenerate diffusion, namely when

m > max

{
2 − 2

d
, 1

}
. (3.1)

In order to avoid loss of mass at infinity, we need to assume some growth
condition at infinity. In this section, we will obtain the existence of global
minimizers under two different conditions related to the works [5,28,67], and
show that such global minimizers are indeed L1 and L∞ stationary solutions.
Namely, we assume further that the potential W satisfies at infinity either the
property
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(K5) lim
r→+∞ ω+(r) = +∞,

or

(K6) lim
r→+∞ ω+(r) = � ∈ (0, +∞) where the non-negative potential K :=
� − W is such that, in the case m > 2, K ∈ L p̂(Rd \ B1(0)), for some
1 ≤ p̂ < ∞, while for the case 2− (2/d) < m ≤ 2 we will require that
K ∈ L p,∞(Rd \ B1(0)), for some 1 ≤ p < ∞. Moreover, there exists
an α ∈ (0, d) for which m > 1 + α/d and

K(τ x) ≥ τ−αK(x), ∀τ ≥ 1, for a.e. x ∈ R
d . (3.2)

Here, we denote by L p,∞(Rd) the weak-L p or Marcinkiewicz space of index
1 ≤ p < ∞. In particular, the attractive Newtonian potential (which is the
fundamental solution of −� operator in Rd ) is covered by these assumptions:
for d = 1, 2 it satisfies (K5), whereas for d ≥ 3 it satisfies (K6)withα = d−2.

Notice that the subadditivity-type condition (K4) allows to claim that E[ρ]
is finite over the class YM : indeed if we split the W into its positive part W+
and negative part W− as done in the bound of ψs in Sect. 2, the integral with
kernel W− is finite by the HLS inequality, see (3.3) below, while by (K4) we
infer

∫
Rd

∫
Rd

W+(x − y) ρ(x)ρ(y) dx dy =
∫
Rd

∫
|x−y|≥1

ω+(|x − y|) ρ(x)ρ(y) dx dy

≤ CM2 + 2M
∫
Rd

ω(1 + |x |)ρ(x)dx .

3.1 Minimization of the Free Energy functional

The existence of minimizers of the functional E can be proven with different
arguments according to the choice between condition (K5) or (K6): indeed,
(K5) produces a quantitative version of the mass confinement effect while
(K6) does it in a nonconstructive way. For such a difference, we first briefly
discuss the case when condition (K6) is employed, as it can be proven by a
simple application of Lion’s concentration-compactness principle [67] and its
variant in [5].

Theorem 3.1 Assume that conditions (3.1), (K1)–(K4) and (K6) hold. Then
for any positive mass M, there exists a global minimizer ρ0, which is radially
symmetric and decreasing, of the free energy functional E in YM. Moreover,
all global minimizers are radially symmetric and decreasing.
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Proof We write E[ρ] = Ẽ[ρ] + �
2M

2, where

Ẽ[ρ] = 1

m − 1

∫
Rd

ρm dx − 1

2

∫
Rd

∫
Rd

K(x − y) ρ(x)ρ(y) dx dy,

being the kernelK non-negative and radially decreasing; furthermore condition
(K3) implies K ∈ L p,∞(B1(0)), where p = d/(d − 2). Then we are in
position to apply [5, Theorem 1] for m > 2 and [67, Corollary II.1] for
2 − (2/d) < m ≤ 2 to get the existence of a radially decreasing minimizer
ρ0 ∈ YM of Ẽ (and then of E).Moreover, sinceK is strictly radially decreasing,
all global minimizers are radially decreasing. ��
When considering the presence of condition (K5) the concentration-compa-
ctness principle is not applicable but a direct control of the mass confinement
phenomenon is possible. Then we first prove the following Lemma, which
provides a reversed Riesz inequality, allowing to reduce the study of the min-
imization of E to the set of all the radially decreasing density in YM .

Lemma 3.2 Assume that conditions (K1)–(K5) hold and take a density ρ

such that

ρ ∈ L1+(Rd), ω(1 + |x |) ρ(x) ∈ L1(Rd).

Then the following inequality holds:

I[ρ] =
∫
R2

∫
R2

W (x − y)ρ(x)ρ(y)dx dy

≥
∫
R2

∫
R2

W (x − y)ρ#(x)ρ#(y)dx dy = I[ρ#]

and the equality occurs if and only if ρ is a translate of ρ#.

Proof The proof proceeds exactly as in [27, Lemma 2], up to replacing the
function k(r) defined there by the function

κ(r) =
{−ω(r) if r ≤ r0

−ω(r0) − ∫ rr0 ω′(s)1+r20
1+s2

ds if r > r0,

being r0 > 0 fixed. ��
Theorem 3.3 Assume that (3.1) and (K1)–(K5) hold, then the conclusions
of Theorem 3.1 remain true.

Proof We follow the main lines of [28, Theorem 2.1]. By Lemma 3.2 we can
restrict ourselves to consider only radially decreasing densities ρ. In order to
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show that I[ρ] is bounded from below, we first argue in the case d ≥ 3. Thanks
to conditions (K1)–(K2) we have

∫
Rd

∫
Rd

W (x − y)ρ(x)ρ(y)dx dy ≥ −C
∫
Rd

∫
|x−y|≤1

ρ(x)ρ(y)

|x − y|d−2 dx dy

≥ −C
∫
Rd

∫
Rd

ρ(x)ρ(y)

|x − y|d−2 dx dy.

Now we observe that by (3.1) we have

1 <
2d

d + 2
< m

and d−2
d + d+2

2d + d+2
2d = 2, then by the classical HLS and L p interpolation

inequalities, we find

I[ρ] =
∫
Rd

∫
Rd

W (x − y)ρ(x)ρ(y)dx dy ≥ −C‖ρ‖2L2d/(d+2)(Rd )

≥ −C‖ρ‖2αL1(Rd )
‖ρ‖2(1−α)

Lm(Rd )
, (3.3)

where α = 1
m−1

(
m d+2

2d − 1
)
. Then by (3.3) we find that

E[ρ] ≥ 1

m − 1
‖ρ‖mLm(Rd )

− CM2α‖ρ‖2(1−α)

Lm(Rd )
(3.4)

where we notice that m > 2(1 − α) if and only if m > 2 − 2
d , that is (3.1).

Then by (3.4) we can find a constant C1 > 0 and a sufficiently large constant
C2 such that

E[ρ] ≥ −C1 + C2‖ρ‖mLm(Rd )
.

Concerning the case d = 2, we observe that conditions (K1)–(K2) yield
∫
R2

∫
R2

W (x − y)ρ(x)ρ(y)dx dy ≥ −C
∫
R2

dx
∫
|x−y|≤1

log(|x − y|)ρ(x)ρ(y)dxdy

≥ −C
∫
R2

dx
∫
R2

log(|x − y|)ρ(x)ρ(y)dxdy

and we can use the classical log-HLS inequality and the arguments of [28] to
conclude.
Concerning the mass confinement, due to (K5) and the same arguments in
[28], see also Lemma 4.17, allow us to show
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∫
|x |>R

ρ(x) dx ≤ C

ω(R)
−→ 0
R→∞ .

Finally, we should check that the interaction potential W is lower semi-
continuous as shown in [28, page8]. Indeed, the only technical point to verify
in this more general setting relates to the control of the truncated interaction
potential Aε for d ≥ 3. Notice that we can estimate due to (2.3)

|Aε[ρ]| :=
∣∣∣∣
∫
Rd

∫
|x−y|≤ε

W (x − y)ρ(x)ρ(y)dxdy

∣∣∣∣
≤ C

∫
Rd

∫
|x−y|≤ε

ρ(x)ρ(y)

|x − y|d−2 dxdy

= C
∫
Rd

∫
Rd

ρ(x) (χBε(0) N )(x − y) ρ(y) dxdy.

Now recall that the Newtonian potential

�ρ(x) =
∫
Rd

ρ(y)

|x − y|d−2 dy

is well defined for a.e. x ∈ R
d and is in L1

loc(R
d), see [47, Theorem 2.21],

then for a.e. x ∈ R
d we have χBε(0) N ∗ ρ → 0 as ε → 0. Moreover, by the

HLS inequality we have

ρ(x)(χBε(0) N ∗ ρ)(x) ≤ ρ(x)�ρ(x) ∈ L1
loc(R

d)

with

‖ρ(x)�ρ‖L1(Rd ) ≤ C‖ρ‖2αL1(Rd )
‖ρ‖2(1−α)

Lm(Rd )
.

Then Lebesgue’s dominated convergence theorem allows to conclude that
Aε[ρ] → 0 as ε → 0. This convergence is uniform taken on a minimizing
sequence ρn .

Now, all ingredients are there to argue as in [28] showing that E achieves
its infimum in the class of all radially decreasing densities in YM . ��

Remark 3.4 According to Theorem 2.2, the radial symmetry of the global
minimizers of E , which are particular critical points of E , is not a surprise.
Nevertheless, as pointed out in the proofs of Theorems 3.1–3.3, this property
can be much more easily achieved by rearrangement inequalities.
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A useful result, which will be used in the next arguments, regards the behav-
ior at infinity of the so called W -potential, namely the function

ψ f (x) =
∫
Rd

W (x − y) f (y)dy.

Following the blueprint of [37, Lemma 1.1], we have the following result.

Lemma 3.5 Assume that (K1)–(K5) hold, and let

f ∈ L1(Rd) ∩ L∞(Rd \ B1(0)), ω(1 + |x |) f (x) ∈ L1(Rd).

Then

ψ f (x)

W (x)
→
∫
Rd

f (y)dy as |x | → +∞.

Proof As in Chae-Tarantello [37], we first set

σ(x) := ψ f (x)

ω(|x |) −
∫
Rd

f (y)dy

= 1

ω(|x |)
∫
Rd

[ω(|x − y|)−ω(|x |)] f (y)dy (3.5)

so that our aim will be to show that σ(x) → 0 as |x | → ∞. Assume that
|x | > 2. We then write

σ(x) = σ1(x) + σ2(x) + σ3(x),

where σi , i = 1, 2, 3, are defined by breaking the integral on the right hand
side of (3.5) into:

D1 = {y : |x − y| < 1} , D2 = {y : |x − y| > 1, |y| ≤ R} and

D3 = {y : |x − y| > 1, |y| > R}
respectively, where R > 2 is a fixed constant. Recall that (K2) implies
|ω(r)| ≤ Cφ(r) for r ≤ 1, with φ given in (2.3). Thus, we have

|σ1(x)| ≤ 1

ω(|x |)
∫

|x−y|<1
|ω(|x − y|) − ω(|x |)| | f (y)|dy

≤ C

ω(|x |)
∫

|x−y|<1
φ(|x − y|) | f (y)|dy +

∫
|y|>|x |−1

| f |dy

≤ C‖ f ‖L∞(Rd\B1(0))‖φ‖L1(B1(0))

ω(|x |) +
∫

|y|>|x |−1
| f |dy ,
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where we used f ∈ L∞(Rd \ B1(0)) and |x | > 2 in the last inequality. This
means that σ1(x) → 0 as |x | → ∞. Moreover, we notice that

|σ2(x)| ≤ 1

ω(|x |)
∫
{y∈Rd :|x−y|>1, |y|<R}

|ω(|x − y|) − ω(|x |)| | f (y)|dy .

Since by property (K3) we can estimate in the region D2

|ω(|x − y|) − ω(|x |)| ≤ C
∣∣|x − y| − |x |∣∣ ≤ C |y| ≤ CR ,

such that

|σ2(x)| ≤ C
R

ω(|x |)‖ f ‖L1(Rd ),

which implies that also σ2(x) → 0 as |x | → +∞. As for σ3, for x such that
|x | > R, using (K4)–(K5) we write

|σ3(x)| ≤ 1

ω(|x |)
∫
{
y∈Rd :|x−y|>1, R<|y|<|x |} |ω(|x − y|) − ω(|x |)| | f (y)|dy

+ 1

ω(|x |)
∫
{
y∈Rd :|x−y|>1, |y|>|x |} ω(|x − y|)| f (y)|dy +

∫
|y|>R

| f (y)|dy

≤ ω(2|x |)
ω(|x |)

∫
|y|>R

| f (y)|dy + 2
∫
|y|>R

| f (y)|dy

+ Cw

ω(|x |)
∫
{
y∈Rd :|x−y|>1, |y|>|x |} [1 + ω(1 + |x |) + ω(1 + |y|)] | f (y)|dy

≤C

(
1 + 1

ω(|x |)
)∫

|y|>R
| f (y)|dy + 1

ω(|x |)
∫
Rd

ω(1 + |y|)| f (y)|dy

→ C
∫
|y|>R

| f (y)|dy

as |x | → +∞, for any fixed R > 1. Hence letting R → +∞ we get σ3(x) →
0. ��

In case of assumption (K6), we prove the following Lemma.

Lemma 3.6 Assume (3.1), (K1)–(K4) and (K6) hold, and let K := � − W
be as defined in (K6). Then the following holds for any radially decreasing
f ∈ L1+(Rd):

lim|x |→∞

∫
Rd

K(x − y) f (y)dy = 0, (3.6)
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and ∫
Rd

K(x − y) f (y)dy ≥ cK(x) for all |x | > 1, (3.7)

where c := 2−α
∫
B1(0)

f (y)dy > 0, with α > 0 as given in (K6).

Proof Since both f and K are radially symmetric, we define f̄ , K̄ :
[0, +∞) → R such that f̄ (|x |) = f (x), K̄(|x |) = K(x). Note that
limr→∞ f̄ (r) = limr→∞ K̄(r) = 0 due to (K1), (K6) and the assumption
on f . To prove (3.6), we break

∫
Rd K(x − y) f (y)dy into the following three

parts with |x | > 1 and control them respectively by:
∫

|y|> |x |
2 ,|x−y|≤1

K(x − y) f (y)dy ≤ ‖K‖L1(B1(0)) f̄ (|x | − 1),

∫
|y|> |x |

2 ,|x−y|>1
K(x − y) f (y)dy ≤ K̄(1)

∫
|y|> |x |

2

f (y)dy,

and
∫

|y|≤ |x |
2

K(x − y) f (y)dy ≤ K̄
( |x |

2

)
‖ f ‖L1 .

Since all the three parts tend to 0 as |x | → ∞, we obtain (3.6). To show (3.7),
we use K, f ≥ 0 to estimate
∫
Rd

K(x − y) f (y)dy ≥
∫

|y|≤1
K(x − y) f (y)dy ≥ K̄(|x | + 1)

∫
B1(0)

f (y)dy

≥
( |x | + 1

|x |
)−α

K̄(|x |)
∫
B1(0)

f (y)dy ≥ cK(x)

for any |x | > 1,

where we apply (K6) to obtain the third inequality, and in the last inequality
we define c := 2−α

∫
B1(0)

f (y)dy > 0. ��
Using similar arguments as in [28], we are able to derive the following result,

which indeed gives a natural form of the Euler–Lagrange equation associated
to the functional E :
Theorem 3.7 Assume that (3.1), (K1)–(K4) and either (K5) or (K6) hold.
Let ρ0 ∈ YM be a global minimizer of the free energy functional E . Then for
some positive constant D[ρ0], we have that ρ0 satisfies

m

m − 1
ρm−1
0 + W ∗ ρ0 = D[ρ0] a.e. in supp(ρ0) (3.8)
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and

m

m − 1
ρm−1
0 + W ∗ ρ0 ≥ D[ρ0] a.e. outside supp(ρ0)

where

D[ρ0] = 2

M
G[ρ0] + m − 2

M(m − 1)
‖ρ0‖mLm(Rd )

.

As a consequence, any global minimizer of E verifies

m

m − 1
ρm−1
0 = (D[ρ0] − W ∗ ρ0)+ . (3.9)

We now turn to show compactness of support and boundedness of the min-
imizers.

Lemma 3.8 Assume that (3.1), (K1)–(K4) and either (K5) or (K6) hold and
let ρ0 ∈ YM be a global minimizer of the free energy functional E . Then ρ0 is
compactly supported.

Proof By Theorems 3.1 and 3.3, ρ0 is radially decreasing under either set of
assumptions. In addition, under the assumption (K5), Lemma 3.5 gives that

(W ∗ ρ0)(x)

W (x)
→ ‖ρ‖L1(Rd ) as |x | → ∞,

hence combining this with (K5) gives us (W ∗ ρ0)(x) → +∞ as |x | → ∞. It
implies that the right hand side of (3.9) must have compact support, hence ρ0
must have compact support too.

Under the assumption (K6), towards a contradiction, suppose ρ0 does not
have compact support. Thenρ0 must be strictly positive inRd since it is radially
decreasing. We can then write (3.8) as

m

m − 1
ρm−1
0 − K ∗ ρ0 = C a.e. in Rd

for some C ∈ R, where K := � − W is as given in (K6). Indeed, C must be
equal to 0, since both ρ0(x) and (K ∗ ρ0)(x) tend to 0 as |x | → ∞, where we
used (3.6) on the latter convergence. Thus

ρ0(x) =
(
m − 1

m
(K ∗ ρ0)(x)

) 1
m−1 ≥

(m − 1

m
cK(x)

)1/(m−1)
for a.e. |x | > 1,

(3.10)
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where we applied (3.7) to obtain the last inequality, with c := 2−α
∫
B1(0)

ρ0(y)dy > 0. Due to the assumptions (3.2) and α < d(m − 1) in (K6),
we have

∫
|x |>1K(x)1/(m−1)dx = +∞. Combining this with (3.10) leads to

ρ0 /∈ L1(Rd), a contradiction. ��
Lemma 3.9 Assume that (3.1), (K1)–(K4) and either (K5) or (K6) hold
and let ρ0 ∈ YM be a global minimizer of the free energy functional E . Then
ρ0 ∈ L∞(Rd).

Proof By Theorems 3.1, 3.3 and Lemma 3.8, ρ0 is radially decreasing and
has compact support say inside the ball BR(0). Let us first concentrate on the
proof under assumption (K5). For notational simplicity in this proof, we will
denote by ‖ρ0‖m the Lm(Rd)-norm of ρ0.

We will show that ρ0 ∈ L∞(Rd) by different arguments in several cases:
Case A: d ≤ 2. Since ρ0 is supported in BR(0), we can then find some C1

w

and C2
w, such that W ≥ −C1

wN − C2
w in B2R(0). Hence for any r < R, we

have

−(ρ0 ∗ W )(r) ≤ −(ρ0 ∗ (−C1
wN − C2

w))(r) ≤ C1
w(ρ0 ∗ N )(r) + C2

w‖ρ0‖1,
thus recalling (2.4)

(ρ0 ∗ W−)(r) ≤ C1
w(ρ0 ∗ N )(r) + C2

w‖ρ0‖1 + (ρ0 ∗ W+)(r)

≤ C1
w(ρ0 ∗ N )(r) + C2

w‖ρ0‖1 + C̃ .

Then by Eq. (3.9) it will be enough to show that the Newtonian potential
ρ0 ∗ N is bounded in BR(0) for d = 1, 2. In d = 1, this is trivial. In d = 2
it follows from [50, Lemma 9.9] since we have that ρ0 ∗ N ∈ W2,m(BR(0)),
thenMorrey’s Theorem (see for instance [17, Corollary 9.15]) yields ρ0 ∗N ∈
L∞(BR(0)).
Case B: d ≥ 3 andm > d/2. In this case we getW− ≤ Cw N in the whole

R
d for some constant Cw, so we have for r > 0

(ρ0 ∗ W−)(r) ≤ Cw(ρ0 ∗ N )(r).

Then using Sobolev’s embedding theorem again (see again [17, Corollary
9.15]), we easily argue that for m > d/2 we find (ρ0 ∗ W−)(r) ∈ L∞

loc(R
d),

hence ρ0 ∈ L∞(Rd) by (3.9) again.
Case C: d ≥ 3 and 2− 2

d < m ≤ d/2. We aim to prove that ρ0(0) is finite
which is sufficient for the boundedness of ρ0 since ρ0 is radially decreasing.
This is done by an inductive argument. To begin with, observe that since ρ0 is
radially decreasing we have that ρ0(r)m |B(0, r)| ≤ ‖ρ0‖mm < ∞, which leads
to the basis step of our induction
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ρ0(r) ≤ C(d,m, ‖ρ0‖m)r−d/m for all r > 0.

We set our first exponent p̃ = −d/m. For the induction step, we claim that if
ρ0(r) ≤ C1(1 + r p) with −d < p < 0, then it leads to the refined estimate

ρ0(r) ≤
{
C2(1 + r

p+2
m−1 ) if p �= −2

C2(1 + | log r | 1
m−1 ) if p = −2,

(3.11)

where C2 depends on d,m, ρ0,W and C1.
Indeed, taking into account (K2) and (K5), the compact support of ρ0

together with the fact that N > 0 for d ≥ 3, we deduce that W ≥ −Cw,d N
for some constant depending onW and d. As a result, we have, for r ∈ (0, 1),

− (ρ0 ∗ W )(r) ≤ Cw,d(ρ0 ∗ N )(r)

= Cw,d

(
(ρ0 ∗ N )(1) −

∫ 1

r
∂r (ρ0 ∗ N )(s)ds

)
. (3.12)

We can easily bound (ρ0 ∗N )(1) by someC(d, ‖ρ0‖m). To control
∫ 1
r ∂r (ρ0 ∗

N )(s)ds, recall that

− ∂r (ρ0 ∗ N )(s) = M(s)

|∂B(0, s)| = M(s)

σdsd−1 , (3.13)

where M(s) is the mass of ρ0 in B(0, s). By our induction assumption, we
have

M(s) ≤
∫ s

0
C1(1 + t p)σd t

d−1dt = C1σd

(
sd

d
+ sd+p

d + p

)
.

Combining this with (3.13), we have

−∂r (ρ0 ∗ N )(s) ≤ C1

(
s

d
+ s1+p

d + p

)
,

so we get, for p �= −2,

−
∫ 1

r
∂r (ρ0 ∗ N )(s)ds ≤ C1

[
1

2d
(1 − r2) + 1

(d + p)(2 + p)
(1 − r2+p)

]
.

Plugging it into the right hand side of (3.12) yields

−(ρ0 ∗ W )(r) ≤ C(d,m, ‖ρ0‖m,Cw,d ,C1)(1 + r2+p),
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and using this inequality in the Euler–Lagrange Eq. (3.9) leads to (3.11).More-
over, in the case p = −2, we have instead the inequality

−
∫ 1

r
∂r (ρ0 ∗ N )(s)ds ≤ C1

[
1

2d
(1 − r2) − 1

d − 2
log r

]
.

Now we are ready to apply the induction starting at p̃ = −d/m to show
ρ0(0) < ∞. We will show that after a finite number of iterations our induction
arrives to

ρ0(r) ≤ C(1 + ra) (3.14)

for some a > 0, which then implies that ρ0(0) < ∞. Let g(p) := p+2
m−1 , which

is a linear function of p with positive slope, and let us denote g(n)(p) =:
(g ◦ g · · · ◦ g)︸ ︷︷ ︸

n iterations

(p).

Subcase C.1: m = d/2.- In this case, we have p̃ = −2 and by (3.11) we
obtain

ρ0(r) ≤ C2(1 + | log r | 1
m−1 ) ≤ C2(1 + r−1)

hence applying the first inequality in (3.11) for p = −1 gives us (3.14) with
a = 1/(m − 1).

Then it remains to consider the case m < d/2. Notice that −d < p̃ < −2.
By (3.11) we get, for all r ∈ (0, 1),

ρ0(r) ≤ C2(1 + r g( p̃)). (3.15)

Then we must consider three cases. We point out that in all the cases we need
to discuss the possibility of g(n)(p) = −2 for some n: if this happens, the
logarithmic case occurs again and the result follows in a final iteration step as
in Subcase C.1.

Subcase C.2: m = 2 and m < d/2.- In this case, we have g(p) = p + 2,
hence g(n)(p) = p + 2n, then

lim
n→∞ g(n)(p) = +∞.

Therefore we have g(n)( p̃) > 0 for some finite n, whence iterating (3.15) n
times we find ρ0(0) < ∞.

Subcase C.3: m > 2 and m < d/2.- In this case, p = 2/(m − 2) is the only
fixed point for the linear function g(p). For all p < 2

m−2 we have g(p) > p

which implies g(n)(p) > p for all n ∈ N. Notice that
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g(n)(p) = 2

m − 2
+ p(m − 2) − 2

(m − 2)(m − 1)n
, (3.16)

so the point p = 2/(m − 2) is attracting in the sense that

lim
n→∞ g(n)(p) = 2

m − 2
.

Since 2
m−2 > 0, it again implies that g(n)(p) > 0 for some finite n. Then

choosing p = p̃, we have g(n)( p̃) > 0 for some n, then (3.15) implies ρ0(0) <

∞ again.
Subcase C.4: m < min(2, d/2).- In this case, the only fixed point 2

m−2 is

unstable, and we have g(p) > p for any p > 2
m−2 , then by (3.16)

lim
n→∞ g(n)(p) = +∞ for any p >

2

m − 2
.

Notice that p̃ > 2
m−2 , since this condition reads m > 2d/(d + 2), a direct

consequence of (3.1). Hence we again obtain g(n)( p̃) > 0 for some finite n,
which finishes the last case.

Let us finally turn back to the proof ifwe assume (K6) instead of (K5).Notice
first that the proof of the Case C can also be done as soon as the potential W
satisfies the bound W ≥ −Cw,d(1 + N ) for some Cw,d > 0. This is trivially
true regardless of the dimension if the potential satisfies (K6) instead of (K5).

��
Finally, it is interesting to derive some regularity properties of a minimizer

ρ0, as in [28]. Since W may not be the classical Newtonian kernel, we are led
to prove a nice regularity for theW -potential ψρ0(x) which can be transferred
to ρ0 via equation (3.8) in the support of ρ0. Note that (3.9) ensures that
ρ0 satisfies equation (2.1) in the sense of distributions: indeed, as shown in
(2.2)–(2.4), we find that ψρ0 ∈ W1,∞

loc (Rd) thus we can take gradients on both
sides of the Euler–Lagrange condition (3.9) and multiplying by ρ and writing
ρ∇ρm−1 = m−1

m ∇ρm we reach (2.1). Now, using the regularity arguments of
the proof of Lemma 2.3 again, together with the compact support property, we
finally have ρ0 ∈ C0,α(Rd) with α = 1/(m − 1).

We can summarize all the results in this section in the following theorem.

Theorem 3.10 In the diffusion dominated regime (3.1), assume that conditions
(K1)–(K4) and either (K5) or (K6) hold. Then for any positivemass M, there
exists a global minimizer ρ0 of the free energy functional E (2.5) defined in
YM, which is radially symmetric, decreasing, compactly supported, Hölder
continuous, and a stationary solution of (1.1) in the sense of Definition 2.1.
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Putting together the previous theorem with the uniqueness of radial stationary
solutions for the attractive Newtonian potential proved in [28,61], we obtain
the following result.

Corollary 3.11 In the particular case of the attractive Newtonian potential
W (x) = −N (x)modulo the addition of a constant factor, the globalminimizer
obtained in Theorem 3.10 is unique among all stationary solutions in the sense
of Definition 2.1.

3.2 Some remarks about the minimization of energies with a potential
term

The aim of this subsection is to generalize the previous result of Sect. 3.1 when
dealing with free functionals involving a potential energy, namely

E[ρ] = 1

m − 1

∫
Rd

ρm dx + 1

2

∫
Rd

∫
Rd

W (x − y) ρ(x)ρ(y) dx dy

+
∫
Rd

V (x)ρ(x) dx,

defined over the same admissible set YM , for some C1 non-negative radially
increasing potential V = V (r), where r = |x |, such that

lim
r→+∞ V (r) = +∞.

In this framework, the functional E might be infinite on some densities ρ. The
presence of the confinement potential V allows then to prove the following
generalization of theorems 3.1–3.3, where no asymptotic behavior at infinity
is needed for the radial profile ω(r) of the kernel W :

Theorem 3.12 Assume that (3.1) and (K1)–(K4) hold, then the conclusions
of Theorem 3.1–3.3 remain true.

Proof We first observe that by Remark 2.7 and Lemma 3.2 we can restrict
to radially decreasing densities. Moreover, following the lines of the proof of
Theorem 3.3 we find that E is bounded from below and

E[ρ] ≥ −C1 + C2‖ρ‖mLm(Rd )
+
∫
Rd

V (x)ρ(x)dx .

This inequality easily implies the mass confinement of any minimizing
sequence {ρn}, that is for some constant C > 0

sup
n∈N

∫
|x |>R

ρn(x)dx ≤ C

V (R)
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for some large R > 0. In particular, we have that the sequence {ρn} is tight,
and by Prokhorov’s Theorem (see [3, Theorem 5.1.3]) we obtain that (up to
subsequence) {ρn} converges to a certain density ρ ∈ L1+(Rd) ∩ Lm(Rd),
‖ρ‖L1(Rd ) = M , with respect to the narrow topology. Then [3, Lemma 5.1.7]
ensures the lower semicontinuity of the potential energies of {ρn}, that is

lim inf
n→∞

∫
Rd

V (x)ρn(x)dx ≥
∫
Rd

V (x)ρ(x)dx .

This implies that the infimumofE is achieved over a radially decreasing density
ρ ∈ YM . In order to check that all the globalminimizers are radially decreasing,
we pick any minimizer ρ ∈ YM and use Remark 2.7 and Lemma 3.2 in order
to see that

E[ρ] = E[ρ#],

thus

I[ρ] − I[ρ#] =
∫
Rd

V (x)(ρ# − ρ)dx ≤ 0

then the equality case in Lemma 3.2 yields the conclusion. ��
We have the following generalization of Theorem 3.7:

Theorem 3.13 Assume that (3.1), (K1)–(K4) hold. Let ρ0 ∈ YM be a global
minimizer of the free energy functional E . Then for some positive constant
D[ρ0], we have that ρ0 satisfies

m

m − 1
ρm−1
0 + W ∗ ρ0 + V (x) = D[ρ0] a.e. in supp(ρ0) (3.17)

and

m

m − 1
ρm−1
0 + W ∗ ρ0 + V (x) ≥ D[ρ0] a.e. outside supp(ρ0).

As a consequence, any global minimizer of E verifies

m

m − 1
ρm−1
0 = (D[ρ0] − W ∗ ρ0 − V (x))+ .

The compactly supported property of the minimizers then follows from (3.17)
and Lemmas 3.5–3.6. Moreover, it is straightforward to check that Lemma 3.9
continues to hold, as well as Theorem 3.10.
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4 Long-time asymptotics

We now consider the particular case of (1.1) given by the Keller Segel model
in two dimensions with nonlinear diffusion as

∂tρ = �ρm − ∇ · (ρ∇N ∗ ρ) , (4.1)

where m > 1 and the logarithmic interaction kernel is defined as

N (x) = − 1

2π
log |x | .

This system is also referred to as the parabolic-elliptic Keller–Segel system
with nonlinear diffusion, since the attracting potential c = N ∗ ρ solves the
Poisson equation −�c = ρ. It corresponds exactly to the range of diffusion
dominated cases as discussed in [23] since solutions do not show blow-up and
are globally bounded. We will show based on the uniqueness part in Sect. 2
that not only the solutions to (4.1) exist globally and are uniformly bounded
in time in L∞, but also the solutions achieve stabilization in time towards the
unique stationary state for any given initial mass.

The main tool for analyzing stationary states and the existence of solutions
to the evolutionary problem is again the following free energy functional

E[ρ](t) =
∫
R2

ρm

m − 1
dx + 1

4π

∫
R2

∫
R2

log|x − y|ρ(x)ρ(y)dx dy .

(4.2)

A simple differentiation formally shows that E is decaying in time along the
evolution corresponding to (4.1), namely

d

dt
E[ρ](t) = −D[ρ](t)

which gives rise to the following (free) energy–energy dissipation inequality
for weak solutions

E[ρ](t) +
∫ t

0
D[ρ]dτ ≤ E[ρ0] (4.3)

for non-negative initial data ρ0(x) ∈ L1((1 + log(1 + |x |2))dx) ∩ Lm(R2).
The entropy dissipation is given by

D[ρ] =
∫
R2

ρ|∇h[ρ]|2dx ,
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where here and in the following we use the notation

h[ρ] = m

m − 1
ρm−1 − N ∗ ρ .

We shall note that h corresponds to δE
δρ

and that in particular the evolutionary
Eq. (4.1) can be stated as ∂tρ = ∇ · (ρ∇h[ρ]). Thus, this equation bears the
structure of being a gradient flow of the free energy functional in the sense of
probability measures, see [2,9,11,33] and the references therein.

We first prove the global well-posedness of weak solutions satisfying the
energy inequality (4.3) in the next subsection as well as global uniform in time
estimates for the solutions. In the second subsection, we used the uniform in
time estimates together with the uniqueness of the stationary states proved in
Sect. 2 to derive themain result of this section regarding long time asymptotics
for (4.1).

4.1 Global well-posedness of the Cauchy problem

In this section we analyze the existence and uniqueness of a bounded global
weak solution for initial data in L1

log(R
2) ∩ L∞(R2), where here and in the

following we denote

L1
log(R

2) = L1((1 + log(1 + |x |2))dx) .

Assuming to have a sufficiently regular solutionwith the gradient of the chemo-
tactic potential being uniformly bounded, Kowalczyk [63] derived a priori
bounds in L∞ with respect to space and time for the Keller–Segel model with
nonlinear diffusion on bounded domains. These a priori estimates have been
improved and extended to the whole space by Calvez and Carrillo in [23].
We shall demonstrate here how these a priori estimates of [23] can be made
rigorous when starting from an appropriately regularized equation leading to
the following theorem.

Theorem 4.1 (Properties of weak solutions) For any non-negative initial data
ρ0 ∈ L1

log(R
2)∩L∞(R2), there exists a unique global weak solution ρ to (4.1),

which satisfies the energy inequality (4.3) with the energy being bounded from
above and below in the sense that

E∗ ≤ E[ρ](t) ≤ E[ρ0]

for some (negative) constant E∗. In particular ρ is uniformly bounded in space
and time

123



950 J. A. Carrillo et al.

sup
t≥0

‖ρ(t, ·)‖L∞(R2) ≤ C ,

where C depends only on the initial data. Moreover the log-moment grows at
most linearly in time

N (t) =
∫
R2

log(1 + |x |2)ρ(t, x)dx ≤ N (0) + Ct ,

where again C depends only on the initial data.

Weshall also state the existence result for radial initial data thatwas obtained
in [65] and [61] for higher dimensions and the Newtonian potential. Similar
methods can be applied in the case d = 2 considered here:

Theorem 4.2 (Properties of radial solutions) Let ρ0 ∈ L1
log(R

2) ∩ L∞(R2)

be non-negative and radially symmetric.

(a) Then the corresponding unique weak solution of (4.1) remains radially
symmetric for all t > 0.

(b) If ρ0 is compactly supported, then the solution remains compactly sup-
ported for all t > 0.

(c) If ρ0 is moreover monotonically decreasing, then the solution remains
radially decreasing for all t > 0.

In the remainder of this section we carry out the proof of the existence of a
bounded global weak solution to (4.1) as stated in Theorem 4.1. We therefore
introduce the following regularization of (4.1)

∂tρε = �(ρm
ε + ερε) − ∇ · (ρε∇Nε ∗ ρε) , (4.4)

where m > 1 and the regularized logarithmic interaction potential is defined
as

Nε(x) = − 1

4π
log(|x |2 + ε2) .

Moreover we have for the derivatives

∇Nε = − 1

2π

x

|x |2 + ε2
, �Nε = − 1

π

ε2(|x |2 + ε2
)2 = −Jε

satisfying

‖Jε‖L1(R2) = 1 .
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The regularization in (4.4) was used by Bian and Liu [8], who studied the
Keller–Segel equationwith nonlinear diffusion and theNewtonian potential for
d ≥ 3, which has been modified accordingly for the logarithmic interaction
kernel in d = 2. The additional linear diffusion term in (4.4) removes the
degeneracy and the regularized logarithmic potentialNε possesses a uniformly
bounded gradient, such that the localwell posedness of (4.4) is a standard result
for any ε > 0. We shall note that a slightly different regularization for such
nonlinear diffusion Keller–Segel type of equations has been introduced by
Sugiyama in [80], which also yields the existence and uniqueness of a global
weak solution. The advantage of the regularization in (4.4) resembling the one
in [8] is the fact that the regularized problem satisfies a free energy inequality,
that in the limit gives exactly (4.3), whereas in [80] the dissipation term could
only be retained with a factor of 3/4.

We point out that in the case d = 2 other a priori estimates are available
than in higher space dimensions leading to a different proof for global well
posedness of the Cauchy problem for (4.4) and the limit ε → 0 compared
to [8].

4.1.1 Global well posedness of the regularized Cauchy problem

To derive a priori estimates for the regularized problem (4.4) we use the iter-
ative method used by Kowalczyk [63] based on employing test functions that
are powers of ρε,k = (ρε − k)+ for some k > 0. When testing (4.4) against
pρ p−1

ε,k for any p ≥ 2, we obtain:

d

dt

∫
R2

ρ
p
ε,kdx

= −4(p − 1)

p

∫
R2

(mρm−1
ε + ε)|∇ρ

p
2
ε,k |2dx

+ p
∫
R2

(ρε,k + k)(∇Nε ∗ ρε) · ∇ρ
p−1
ε,k dx (4.5)

≤ −4(p − 1)

p
m
∫
R2

ρm−1
ε |∇ρ

p
2
ε,k |2dx

+
∫
R2

(∇Nε ∗ ρε) · ((p − 1)∇ρ
p
ε,k + kp∇ρ

p−1
ε,k )dx

≤ −4(p − 1)

p
mkm−1‖∇ρ

p
2
ε,k‖2L2 +

∫
R2

Jε ∗ ρε((p − 1)ρ p
ε,k + kpρ p−1

ε,k )dx

≤ −4(p − 1)

p
mkm−1‖∇ρ

p
2
ε,k‖2L2 +

∫
R2

(Jε ∗ ρε,k + k)((p − 1)ρ p
ε,k + kpρ p−1

ε,k )dx

≤ −4(p − 1)

p
mkm−1‖∇ρ

p
2
ε,k‖2L2 + C(p − 1)

∫
R2

ρ
p+1
ε,k dx

+ Ckp
∫
R2

ρ
p
ε,kdx + k2 p

∫
R2

ρ
p−1
ε,k dx , (4.6)
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where for estimating the integrals involving convolution terms we used the
inequality

∫
f (x)(g ∗ h)(x)dx ≤ C‖ f ‖L p‖g‖Lq‖h‖Lr ,

1

p
+ 1

q
+ 1

r
= 2, where p, q, r ≥ 1 , (4.7)

see e.g. Lieb and Loss [64]. Closing the estimate (4.6) would yield an estimate
for ρε,k in L∞(0, T ; L p(R2)) and thus also for ρε ∈ L∞(0, T ; L p(R2)), since

∫
R2

ρ p
ε dx ≤ k p−1

∫
{ρε<k}

ρεdx +
∫

{ρε≥k}
(ρε − k)pdx + C(p, k)

∫
{ρε≥k}

kdx

≤
∫
R2

ρ
p
ε,kdx + (k p−1 + C(p, k))M . (4.8)

Kowalczyk proceeded from (4.5) with the assumption corresponding to
‖∇Nε ∗ ρε‖L∞ ≤ C . Observe that it would be sufficient to prove ρε ∈
L∞(0, T ; L p(R2)) for some p > 2 implying �Nε ∗ρε ∈ L∞(0, T ; L p(R2))

and hence the uniform boundedness of the gradient term by Sobolev imbed-
ding.Calvez andCarrillo [23] circumvent this assumption and derive the bound
by using an equi-integrability property in the inequality (4.6). Hence, in order
to being able to follow the ideas of [23] for the regularized problem, we need
to derive the corresponding energy inequality for the latter.

Proposition 4.3 For any finite time T > 0 the solution ρε to the Cauchy
problem (4.4) supplementedwith initial dataρ0 ∈ L1

log(R
2)∩L∞(R2) satisfies

the energy inequality

Eε[ρε](t) +
∫ t

0
Dε[ρε](t)dt ≤ Eε[ρ0] + εC(1 + t)t , (4.9)

for a positive constant C = C(M, ‖ρ0‖∞) and 0 ≤ t ≤ T , where Eε is an
approximation of the free energy functional in (4.2):

Eε[ρε] =
∫
R2

(
ρm

ε

m − 1
− ρε

2
Nε ∗ ρε

)
dx

and Dε the corresponding dissipation

Dε[ρε](t)=
∫
R2

ρε|∇hε[ρε]|2dx with hε[ρε] = m

m − 1
∇ρm−1

ε −∇Nε ∗ ρε .
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In particular, we obtain equi-integrability

lim
k→∞ sup

t∈[0,T ]

∫
R2

(ρε − k)+dx = 0 .

Remark 4.4 Note that due to the ε�ρε regularization term in (4.4), its associ-
ated energy functional actually includes an extra term ε

∫
ρε log ρε compared

to Eε . But in this lemma we choose to obtain an energy inequality for Eε

(rather than the actual associated energy functional), since the absence of the
extra term ε

∫
ρε log ρε will make it easier for us to obtain a priori estimates

independent of ε later.

Proof Testing (4.4) with m
m−1ρ

m−1
ε − Nε ∗ ρε we obtain

d

dt
Eε(t) +

∫
R2

ρε

∣∣∣∣ m

m − 1
∇ρm−1

ε − ∇Nε ∗ ρε

∣∣∣∣
2
dx + ε

4

m

∫
R2

∣∣∣∣∇ρ
m
2

ε

∣∣∣∣
2
dx

= ε

∫
R2

∇Nε ∗ ρε · ∇ρεdx = ε

∫
R2

ρε(Jε ∗ ρε)dx ≤ ε‖ρε‖2L2(R2)
,

where we have used (4.7) and the fact that ‖Jε‖L1(R2) = 1. Hence we need
to derive an a priori bound for ρε in L2(R2). We use the estimate (4.6) for
p = 2 and bound

∫
R2 ρ3

ε,kdx using the Gagliardo–Nirenberg inequality (see
for instance [49,74]) as follows:

‖ρε,k‖3L3(R2)
≤ C‖∇ρε,k‖2L2(R2)

‖ρε,k‖L1(R2)

≤ CM‖∇ρε,k‖2L2(R2)
.

Then by (4.6) and interpolation of the L2-integral, we have

d

dt

∫
R2

ρ2
ε,kdx ≤ −2mkm−1‖∇ρε,k‖2L2 + C

∫
R2

ρ3
ε,k dx + 3k2

∫
R2

ρε,kdx

≤ −(2mkm−1 − CM)‖∇ρε,k‖2L2 + Ck2M.

Hence, choosing k large enough, recalling m > 1 and estimate (4.8), we can
conclude by integrating in time that

‖ρε(t, ·)‖2L2(R2)
≤ C(1 + t)

for some constant C = C(M, ‖ρ0‖L∞(R2)), which implies the stated energy
inequality.

In order to obtain a priori bounds and in particular the equi-integrability
property, we need to bound the energy functional also from below. The differ-
ence to the corresponding energy functional for the original model (4.1) lies
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only in the regularized interaction kernel. Since clearly for all x ∈ R
2 we have

log(|x |2 + ε2) ≥ 2log|x |, we obtain

Eε[ρε] =
∫
R2

ρm
ε

m − 1
dx + 1

8π

∫
R2

∫
R2

ρε(x)log(|x − y|2 + ε2)ρε(y)dxdy

≥
∫
R2

ρm
ε

m − 1
dx + 1

4π

∫
R2

∫
R2

ρε(x)log|x − y|ρε(y)dxdy = E[ρε]

Following [23] we can estimate further using the logarithmic Hardy–
Littlewood–Sobolev inequality

Eε[ρε] ≥ E[ρε] ≥ − M

8π
C(M) +

∫
R2

�(ρε) dx , (4.10)

where C(M) is a constant depending on the mass M and

�(ρ) := ρm

m − 1
− M

8π
ρ log ρ.

Now it is easy to verify there is a constant κ = κ(m, M) > 1 for which

�(ρ) ≥ 0 for ρ ≥ κ,

such that

∫
R2

�−(ρε)dx =
∫
1≤ρε≤κ

�−(ρε)dx ≤ M2

8π
log κ ,

implying in particular

Eε[ρε] ≥ E[ρε] ≥ − M

8π
C(M) − M2

8π
logκ =: E∗ . (4.11)

We therefore find from (4.9), (4.10) and (4.11) that

∫
R2

�+(ρε(t))dx ≤ C + εCT 2 ,

with C = C(m, ‖ρ0‖L1(R2), ‖ρ0‖L∞(R2)) being a constant independent of
t . Since �+ is superlinear at infinity, we obtain the equi-integrability as in
Theorem 5.3 in [23]. ��

The equi-integrability from Proposition 4.3 allows to close the estimate
(4.6) analogously to Lemma 3.1 of [23] leading to a bound for ρε in
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L∞(0, T ; L p(R2)). Moreover, using Moser’s iterative methods of Lemma
3.2 in [23] we finally get a bound for ρε in L∞(0, T ; L∞(R2)). In order to
avoid mass loss at infinity typically the boundedness of the second moment
of the solution is employed. We here however demonstrate that the bound of
the log-moment provides sufficient compactness, having the advantage of less
restrictions on the initial data. We therefore denote for the regularization

Nε(t) =
∫
R2

log(1 + |x |2)ρε(t, x)dx .

The following lemma is now obtained following the ideas of [23]:

Lemma 4.5 The solution ρε to (4.4) for a non-negative initial data ρ0 ∈
L1
log(R

2) ∩ L∞(R2) satisfies for any T > 0:

sup
t∈[0,T ]

‖ρε(t, ·)‖L∞(R2) + ‖Nε(t)‖L∞(0,T ) ≤ C(1 + T + εT 2) ,

where the constant C depends on the initial data.

Proof Computing formally the evolutionof the log-moment in (4.4) in a similar
fashion to [26], we find for the test function φ(x) = log(1 + |x |2) after
integrating by parts

d

dt
Nε =

∫
R2

∂tρε φdx = −
∫
R2

ρε∇hε[ρε] · ∇φdx + ε

∫
R2

ρε�φdx

≤ 1

2

∫
R2

ρε|∇φ|2dx + 1

2

∫
R2

ρε|∇hε[ρε]|2dx + ε

∫
R2

ρε�φdx .

Computing the derivatives of φ we see

|∇φ| =
∣∣∣∣ 2x

1 + |x |2
∣∣∣∣ ≤ 1 , |�φ| = 4

(1 + |x |2)2 ≤ 4 .

We thus obtain

d

dt
Nε ≤ 1

2
((1 + 8ε)M + Dε[ρε]) .

Integration in time andmaking use of the energy - energy dissipation inequality
(4.9) and the uniform bound on Eε from below in (4.11) gives

Nε(t) ≤ Nε(0) + 1

2
(1 + 8ε)Mt + Eε(ρ0) − E∗ + εC(1 + t)t ≤ C(1 + t + εt2)
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The argument can easily be made rigorous by using compactly supported
approximations of φ on R

2 as test functions, see e.g. also [13]. The proof is
concluded by referring to Lemma 3.2 in [23] for the proof of uniform bound-
edness of ρε. ��

Remark 4.6 (i) The fact that the uniform bound of ρε grows linearly with time
originates from the term of order ε in the energy inequality for the regular-
ized equation. Hence the bound on the energy and therefore the modulus of
equi-continuity for the regularized problem are depending on time. How-
ever, for the limiting equation (4.1) this term vanishes and the energy is
decaying for all times, which allows to deduce uniform boundedness of the
solution to (4.1) globally in time and space, see also [23, Lemma 5.7].

(ii) The log-moment of ρε grows at most linearly in time. The same statement
is true for the limiting function. Hence it is only possible to guarantee con-
finement of mass for finite times. This property allowing for compactness
results will in the following be used to pass to the limit in the regularized
problem. Due to the growth of the bound with time it cannot be employed
for the long-time behavior. Hence different methods will be required.

4.1.2 The limit ε → 0

In order to deduce the global well-posedness of the Cauchy problem for (4.1)
it remains to carry out the limit ε → 0. Knowing that the solution remains
uniformly bounded and having the bounds from the energy inequality, we
obtain weak convergence properties of the solution. In order to pass to the
limit with the nonlinearities and in the entropy inequality, strong convergence
results will be required. The following lemma summarizes the uniform bounds
we obtain from Proposition 4.3 and Lemma 4.5:

Lemma 4.7 Let ρε be the solution as in Proposition 4.3, then we obtain the
following uniform in ε bounds

‖ρε‖L∞(0,T ;L1
log(R

2)) + ‖ρε‖L∞((0,T )×R2) ≤ C ,

‖√ρε∇Nε ∗ ρε‖L2((0,T )×R2) + ‖∇Nε ∗ ρε‖L∞((0,T )×R2)

+√
ε‖∇ρε‖L2((0,T )×R2) ≤ C ,

‖∂tρε‖L2(0,T ;H−1(R2)) + ‖ρq
ε ‖L2(0,T ;H1(R2)) ≤ C for any q ≥ m − 1

2
,

where C depends on m, q, ρ0 and T .
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Proof The uniform bounds of the L1
log(R

2)- and L∞(R2)-norms follow from
the conservation of mass and Lemma 4.5. The convolution term

∇Nε ∗ ρε = − 1

2π

∫
R2

y − x

|y − x |2 + ε2
ρε(t, y)dy

can be estimated as follows:

2π |∇Nε ∗ ρε| ≤ ‖ρε‖L∞(R2)

∫
|x−y|≤1

1

|x − y|dy + M ≤ C . (4.12)

The bound of
√

ρε∇Nε ∗ ρε in L2((0, T ) × R
2) follows now easily by using

the conservation of mass.
The basic L2-estimate corresponding to (4.5) for p = 2 and k = 0 implies

after integration in time

1

2

∫
R2

ρ2
εdx ≤ 1

2

∫
R2

ρ2
0dx − ε

∫ T

0

∫
R2

|∇ρε|2dxdt

−m
∫ T

0

∫
R2

ρm−1
ε |∇ρε|2dxdt

+
∫ T

0

∫
R2

(Jε ∗ ρε)ρ
2
ε dxdt .

Using the above a priori estimateswe can further bound employing the inequal-
ity in (4.7)

ε‖∇ρε‖2L2((0,T )×R2)
≤ 1

2

∫
R2

ρ2
0dx + C

∫ T

0

∫
R2

ρ3
εdxdt ≤ C .

Since m > 1, the conservation of mass and the uniform boundedness of ρε

give ρ
m−1/2
ε in L2((0, T ) × R

2). For the gradient we now use the bound on
the entropy dissipation (4.9)

‖∇ρm−1/2
ε ‖2L2((0,T )×R2)

≤ 2
(m − 1/2)2

m2

(∫ T

0
Dε[ρε]dt + ‖√ρε∇Nε ∗ ρε‖2L2((0,T )×R2)

)

≤ C + C‖∇Nε ∗ ρε‖2L∞((0,T )×R2)
MT . (4.13)

The bound for ∇ρq follows easily by rewriting

m − 1
2

q
∇ρq

ε = ρ
q−m+ 1

2
ε ∇ρ

m− 1
2

ε

and using the uniform boundedness of ρε.
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It thus now remains to derive the estimate for the time derivative. Using the
previous estimates we have for any test function φ ∈ L2(0, T ; H1(R2)),

∣∣∣∣
∫ T

0

∫
R2

∂tρεφ dx dt

∣∣∣∣ ≤
∫ T

0

∫
R2

∣∣∇(ρm
ε + ερε) · ∇φ

∣∣ dx dt

+
∫ T

0

∫
R2

|ρε(∇Nε ∗ ρε) · ∇φ| dx dt
≤ (‖∇ρm

ε ‖L2((0,T )×R2) + ε‖∇ρε‖L2((0,T )×R2)

+‖√ρε|∇Nε ∗ ρε|‖L∞((0,T )×R2)

√
T M

)
‖∇φ‖L2((0,T )×R2)

≤ C‖∇φ‖L2((0,T )×R2) .

��
We now use these bounds to derive weak convergence properties. The

Dubinskii Lemma (see Lemma 4.23 in the “Appendix”) can be applied to
obtain the strong convergence locally in space, which can be extended to
global strong convergence using the boundedness of the log-moment.

Lemma 4.8 Let ρε be the solution as in Proposition 4.3. Then, up to a subse-
quence,

ρε → ρ in Lq((0, T ) × R
2) for any 1 ≤ q < ∞ , (4.14)

ρ p
ε ⇀ ρ p in L2(0, T ; H1(R2)) for any m − 1

2
≤p<∞, (4.15)

√
ρε → √

ρ in L2((0, T ) × R
2) , (4.16)

ε∇ρε → 0 in L2((0, T ) × R
2;R2) (4.17)

Proof Since {ρε}ε are uniformly bounded in Lq((0, T )×R
2) for any 1 ≤ q ≤

∞, we obtain from the reflexivity of the Lebesgue spaces for 1 < q < ∞, up
to a subsequence, the weak convergence

ρε ⇀ ρ in Lq((0, T ) × R
2) for any 1 < q < ∞ . (4.18)

Moreover due to the uniform bounds from Lemma 4.7

‖∂tρε‖L2(0,T ;H−1(R2)) + ‖ρr
ε‖L2(0,T ;H1(R2)) ≤ C

for any r ≥ m− 1
2 ,we can apply theDubinskii Lemma stated in the “Appendix”

to derive

ρε → ρ in Lr ((0, T ) × BR(0)) for any 2m ≤ r < ∞ and any R > 0 .
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The boundedness of the log-moment N (t) allows to extend the strong conver-
gence to the whole space, since for any 1 ≤ q < ∞ we have

∫ T

0

∫
|x |>R

ρq
ε dxdt ≤ ‖ρε‖q−1

L∞((0,T )×R2)

∫ T

0

∫
|x |>R

log(1 + |x |2)
log(1 + R2)

ρεdxdt

≤ C(1 + T )

log(1 + R2)
→ 0 ,

as R → ∞. Due to the weak lower semi-continuity of the Lq -norm we can
now conclude with (4.18) that also

∫
|x |>R

ρq (t, x)dx ≤ lim inf
ε>0

∫
|x |>R

ρ
q
ε (t, x)dx → 0 as R → ∞ for all q ≥ 1 .

Hence we can extend the strong convergence locally in space to strong con-
vergence in R2:

ρε → ρ in Lr ((0, T ) × R
2) for any 2m ≤ r < ∞ .

Additionally the strong convergence in L1((0, T )×R
2) can be deduced using

the bound from the energy as stated in Lemma 4.22 in the “Appendix”. Inter-
polation now yields (4.14).

The weak convergence of ρ
m−1/2
ε in L2(0, T ; H1(R2)) holds due to its

uniform boundedness given by inequality (4.13) and the reflexivity of the
latter space, where the limit is identified arguing by the density of spaces. Due
to the uniform boundedness of ρε this assertion can be extended to any finite
power bigger than m − 1/2.

Since moreover
√

ρε is uniformly bounded in L2((0, T )×R
2) we have the

weak convergence towards
√

ρ in L2((0, T ) × R
2), where again the limit is

identified by using the a.e. convergence of ρε from the strong convergence
above. To see (4.16) we rewrite

‖√ρε − √
ρ‖2L2((0,T )×R2)

=
∫ T

0

∫
R2

(ρε − 2
√

ρε
√

ρ + ρ)dx dt

=
∫ T

0

∫
R2

(ρε − ρ)dx dt

−2
∫ T

0

∫
R2

√
ρ (

√
ρε − √

ρ)dx dt .

The first integral vanishes and the second one converges to 0 due to the weak
convergence of

√
ρε ⇀

√
ρ in L2((0, T ) × R

2).
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Finally the convergence in (4.17) is a direct consequence of the bound√
ε‖∇ρε‖L2((0,T )×R2) ≤ C in Lemma 4.7. ��
These convergence results from Lemma 4.8 are sufficient to obtain the weak

convergence of the nonlinearities
√

ρε∇hε[ρε] and ρε∇hε[ρε] in L2((0, T )×
R
2), which allow to pass to the limit in the weak formulation and to deduce

the weak lower semicontinuity of the entropy dissipation term:

Lemma 4.9 Let ρε and ρ be as in Lemma 4.8. Then

√
ρε ∇hε[ρε] ⇀

√
ρ ∇h[ρ] in L2((0, T ) × R

2;R2) (4.19)

ρε ∇hε[ρε] ⇀ ρ ∇h[ρ] in L2((0, T ) × R
2;R2) . (4.20)

Proof Due to (4.15) and (4.16) it remains to verify

√
ρε ∇Nε ∗ ρε ⇀

√
ρ ∇N ∗ ρ in L2((0, T ) × R

2;R2) .

Due to Lemma 4.7, we have the weak convergence of
√

ρε ∇Nε ∗ ρε in
L2((0, T ) × R

2;R2). In order to identify the limit we consider for a φ ∈
L2((0, T ) × R

2;R2):

∫ T

0

∫
R2

(
√

ρε ∇Nε ∗ ρε − √
ρ ∇N ∗ ρ) · φ dxdt

=
∫ T

0

∫
R2

(
√

ρε − √
ρ)(∇Nε ∗ ρε) · φ dxdt

+
∫ T

0

∫
R2

√
ρ(∇(Nε − N ) ∗ ρε) · φ dxdt

+
∫ T

0

∫
R2

√
ρ ∇N ∗ (ρε − ρ) · φ dxdt (4.21)

The first term converges to zero using (4.16), since by (4.12) it is bounded by

‖√ρε − √
ρ‖L2((0,T )×R2)‖∇Nε ∗ ρε‖L∞((0,T )×R2)‖φ‖L2((0,T )×R2)

≤ C‖√ρε − √
ρ‖L2((0,T )×R2) → 0 .

For the second term we first use the Cauchy–Schwarz inequality

∫ T

0

∫
R2

√
ρ(∇(Nε − N ) ∗ ρε) · φ dxdt

≤ √
MT ‖φ‖L2((0,T )×R2)‖∇(Nε − N ) ∗ ρε‖L∞((0,T )×R2) .
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To see that this convolution term vanishes we bound further

|∇(Nε − N ) ∗ ρε| =
∣∣∣∣
∫
R2

(
x − y

|x − y|2 + ε2
− x − y

|x − y|2
)

ρε(y)dy

∣∣∣∣
≤ ε2‖ρε‖L∞(R2)

∫
R2

|x − y|
(|x − y|2 + ε2)|x − y|2 dy

= εC
∫ ∞

0

1

s2 + 1
ds ≤ εC → 0

uniformly in x, t , where we substituted s = |x − y|/ε. For the remaining term
in (4.21) we proceed changing the order of integration, where we again skip
the dependence of ρε and φ on t in the following:

∫ T

0

∫
R2

√
ρ (∇N ∗ (ρε − ρ)) · φ dxdt

= 1

2π

∫ T

0

∫
R2

(√
ρε(y) −√ρ(y)

) (√
ρε(y) +√ρ(y)

)
(∫

R2

√
ρ(x)

x − y

|x − y|2 · φ(x)dx

)
dydt

≤ 1

2π

∥∥√ρε − √
ρ
∥∥
L2((0,T )×R2)

∥∥∥
(√

ρε(·) +√ρ(·)
)

(∫
R2

√
ρ(x)

1

|x − ·| |φ(x)|dx
)∥∥∥∥

L2((0,T )×R2)

To prove that this integral vanishes in the limit, due to (4.16) it suffices to show
that

∫ T

0

∫
R2

((√
ρε(y) +√ρ(y)

) ∫
R2

√
ρ(x)

1

|x − y| |φ(x)|dx
)2

dydt ≤ C .

We shall therefore split the integral into two parts and consider first

∫ T

0

∫
R2

((√
ρε(y) +√ρ(y)

) ∫
|x−y|≤1

√
ρ(x)

1

|x − y| |φ(x)|dx
)2

dydt

≤ 2
∫ T

0

∫
R2

(ρε(y) + ρ(y))

(∫
|x−y|≤1

|φ|2(x) 1

|x − y|dx
)

(∫
|x−y|≤1

ρ(x)
1

|x − y|dx
)

dydt

≤ C‖ρ‖L∞((0,T )×R2)

(‖ρ‖L∞((0,T )×R2) + ‖ρε‖L∞((0,T )×R2)

)
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∫ T

0

∫
R2

∫
|x−y|≤1

|φ|2(x)
|x − y|dydxdt

≤ C
∫ T

0

∫
R2

|φ|2(x)
(∫

|x−y|≤1

1

|x − y|dy
)
dxdt ≤ C‖φ‖2L2((0,T )×R2)

It remains to bound the integral for |x − y| > 1:

∫ T

0

∫
R2

((√
ρε(y) +√ρ(y)

) ∫
|x−y|>1

√
ρ(x)

1

|x − y| |φ(x)|dx
)2

dydt

≤ 2
∫ T

0
‖φ‖2L2(R2)

∫
R2

(ρε(y) + ρ(y))
∫

|x−y|>1
ρ(x)

1

|x − y|2 dxdydt

≤ 2M
∫ T

0
‖φ‖2L2(R2)

∫
R2

(ρε(y) + ρ(y)) dydt = 4M2‖φ‖2L2((0,T )×R2)
.

��
Proof of Theorem 4.1 The convergence property of the nonlinearity in (4.20)
and the weak convergence of the time derivative due to Lemma 4.7 allow to
pass to the limit in the weak formulation of the Cauchy problem for (4.1),
where the linear diffusion term vanishes due to (4.17). The uniqueness of the
solution is implied from Theorem 1.3 and Corollary 6.1 of [32], where we
shall not go further into detail here.

It thus remains to pass to the limit in the energy inequality. Since the energy
dissipation is weakly lower semicontinuous due to (4.19), we get

∫ T

0
D[ρ](t)dt ≤ lim inf

ε>0

∫ T

0
Dε[ρε](t)dt .

In order to obtain the energy inequality (4.3) in the limit ε → 0 it thus remains
to show Eε[ρε](t) → E[ρ](t) for t ∈ [0, T ]. Lemma 4.22 and the uniform
bounds on ρε in Lemma 4.7 directly imply the strong convergence of ρε in
L∞(0, T ; Lm(R2)). It is therefore left to prove the convergence for the con-
volution term and we rewrite

−4π
∫
R2

(ρεNε ∗ ρε − ρN ∗ ρ)dx =
∫
R2

∫
R2

ρε(x)ρε(y)log
|x − y|2 + ε2

|x − y|2 dxdy

+2
∫
R2

∫
R2

(ρε(x)(ρε(y) − ρ(y)) + ρ(y)(ρε(x) − ρ(x))) log|x − y|dxdy .

We split the domain of integration and first analyze the case |x − y| ≥ 1. In
this domain, we get
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∫
R2

∫
|x−y|≥1

ρε(x)ρε(y)log
|x − y|2 + ε2

|x − y|2 dxdy

≤
∫
R2

∫
|x−y|≥1

ρε(x)ρε(y)log(1 + ε2)dxdy ≤ ε2M2 ,

and thus it converges to zero as ε → 0. Using the Cauchy–Schwarz inequality,
we obtain moreover

(∫
R2

∫
|x−y|≥1

ρε(x)(ρε(y) − ρ(y))log|x − y|dxdy
)2

≤ ‖ρε − ρ‖L1(R2)

∫
R2

|ρε(y) − ρ(y)|
∣∣∣∣
∫

|x−y|≥1
ρε(x)log|x − y|dx

∣∣∣∣
2

dy

≤ 2M‖ρε − ρ‖L1(R2)

∫
R2

∫
|x−y|≥1

(log(1 + |x |)
+log(1 + |y|))ρε(x)(ρε(y) + ρ(y))dxdy

≤ 4M2(N (t) + Nε(t))‖ρε − ρ‖L1(R2)

≤ C(1 + T )‖ρε − ρ‖L∞(0,T ;L1(R2)) → 0

We now turn to the integration domain |x − y| < 1, where by dominated
convergence

∫
R2

∫
|x−y|<1

ρε(x)ρε(y)log
|x − y|2 + ε2

|x − y|2 dxdy

≤ ‖ρε‖L∞(R2)

∫
R2

ρε(y)
∫ 1

0
r log

r2 + ε2

r2
drdy

≤ CM
∫ 1

0
r log

r2 + ε2

r2
dr → 0.

This proves the convergence of the entropy,which togetherwith theweak lower
semicontinuity of the entropy-dissipation leads to the desired energy-energy
dissipation inequality (4.3) for the limiting solution ρ. ��

4.2 Long-time behavior of solutions

Ourmain result of Sect. 2 together with the uniqueness argument for radial sta-
tionary solutions to (4.1) of [61] and the characterization of global minimizers
in [28] and Corollary 3.11 leads to the following result:

Theorem 4.10 There exists a unique stationary state ρM of (4.1)withmass M
and zero center of mass in the sense of Definition 2.1 with the property ρM ∈
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L1
log(R

2). Moreover, ρM is compactly supported, bounded, radially symmetric
and non-increasing. Moreover, the unique stationary state is characterized as
the unique global minimizer of the free energy functional (4.2) with mass M.

As a consequence, all stationary states of (4.1) in the sense of Definition 2.1
with mass M are given by translations of the given profile ρM :

S = {ρM(x − x0) such that x0 ∈ R
2} .

Remark 4.11 As in [61, Corollary 2.3] we have the following result comparing
the support and height for stationary states with different masses based on a
scaling argument: Let ρ1 be the radial solution with unit mass. Then the radial
solution with mass M is of the form

ρM(x) = M
1

m−1ρ1(M
− m−2

2(m−1) x) .

For two stationary states ρM1 and ρM2 with masses M1 > M2 the following
relations hold:

(a) If m > 2, then ρM1 has a bigger support and a bigger height than ρM2 .
(b) If m = 2, then all stationary states have the same support.
(c) If 1 < m < 2, then ρM1 has smaller support and bigger height than ρM2 .

We will study now the long time asymptotics for the global weak solutions
ρ of (4.1) that according to the entropy inequality in Theorem 4.1 satisfy

lim
t→∞ E[ρ](t) +

∫ ∞

0
D[ρ](t)dt ≤ E[ρ0] .

Since the entropy is bounded from below, this implies for the entropy dissipa-
tion

lim
t→∞

∫ ∞

t
D[ρ](s)ds = 0 .

Let us therefore now consider the sequence

ρk(t, x) = ρ(t + tk, x) on (0, T ) × R
2 for some tk → ∞ ,

for which we obtain

0 = lim
k→∞

∫ ∞

tk
D[ρ](t)dt ≥ lim

k→∞

∫ T

0
D[ρ](t + tk)dt ≥ 0 .

Thus D[ρk] → 0 in L1(0, T ), or equivalently
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‖√ρk |∇h[ρk]| ‖2L2((0,T )×R2)
→ 0 as k → ∞ .

The proof of convergence towards the steady state will be based on weak
lower semicontinuity of the entropy dissipation. Assume that ρk ⇀ ρ in
L∞(0, T ; L1(R2) ∩ Lm(R2)), then we have to derive

‖√ρ|∇h[ρ]|‖L2((0,T )×R2) ≤ lim inf
k→∞ ‖√ρk |∇h[ρk]|‖L2((0,T )×R2) = 0 .

Since the L2-norm is weakly lower semicontinuous, it therefore remains to
show similarly as in Lemma 4.9

√
ρk∇h[ρk] ⇀

√
ρ∇h[ρ] in L2((0, T ) × R

2) .

From there it can be deduced that ρ is the stationary state ρM with M =
‖ρ0‖L1(R2) by the uniqueness theorem 4.10, if we can guarantee that no mass
gets lost in the limit.

The main difficulty for passing to the limit in the long-time behavior lies
in obtaining sufficient compactness avoiding the loss of mass at infinity. Even
though the mass of ρ(t, ·) is conserved for all time, if a positive amount of
mass escapes to infinity, then a subsequence of ρ(t, ·)may weakly converge to
a stationary solution with mass strictly less than M . To rule out this scenario,
we need to show that the sequence {ρ(t, ·)}t>0 is tight, which can be done by
obtaining uniform-in-time bounds for certain moments for ρ(t, ·). So far we
only have a time-dependent bound on the logarithmicmoment in Theorem 4.1,
which is not enough. Moreover, even if we know that {ρ(t, ·)}t>0 is tight, if we
want to choose the right limiting profile among all stationary states in S, we
need to show the conservation of some symmetry. In fact, it is easy to check
that the center of mass should formally be preserved by the evolution due to
the antisymmetry of the gradient of the Newtonian potential. But to rigorously
justify this, we need to work with moments that are larger than first moment,
so the center of mass is well defined.

Below we state the main theorem in this section, where a key argument is
to establish a uniform-in-time bound on the second moment of ρ(t, ·), if ρ0
has a finite second moment.

Theorem 4.12 Let ρ be the weak solution to (4.1) given in Theorem 4.1 with
non-negative initial data ρ0 ∈ L1((1+|x |2)dx)∩ L∞(R2). Then, as t → ∞,
ρ(·, t) converges to the unique stationary state with the same mass and center
of mass as the initial data, i.e., to

ρc
M := ρM(x − xc) where xc = 1

M

∫
R2

xρ0(x) dx ,
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with M = ‖ρ0‖L1(R2), ensured by Theorem 4.10. More precisely, we have

lim
t→∞ ‖ρ(t, ·) − ρc

M(·)‖Lq (R2) → 0 for all 1 ≤ q < ∞ .

Our aim is to show that the secondmoment of solutions to (4.1) is uniformly
bounded in time for all t ≥ 0. This in turn shows easily that the first moment
is preserved in time for all t ≥ 0, as we will prove below. Recall that by (2.15)
we denote by M2[ f ] the second moment of f ∈ L1+(Rd). We first derive
rigorously the evolution of the second moment in time:

M2[ρ(t, ·)] − M2[ρ(0, ·)] = 4
∫ t

0

∫
R2

ρmdx dt − tM2

2π
(4.22)

starting from the regularized system (4.4). Computing the second moment of
the regularized problem, we obtain

d

dt
M2[ρε] = 4

∫
R2

(ρmε + ερε)dx − 1

π

∫
R2

∫
R2

ρε(x, t)ρε(y, t)
x · (x − y)

|x − y|2 + ε2
dx dy

= 4
∫
R2

(ρmε + ερε)dx − 1

2π

∫
R2

∫
R2

ρε(x, t)ρε(y, t)
|x − y|2

|x − y|2 + ε2
dx dy

= 4
∫
R2

(ρmε + ερε)dx − M2

2π
+ Rε(t) . (4.23)

The strong convergence in (4.14) allows to pass to the limit ε → 0 in the first
integral of (4.23) and for the remainder term we moreover have due to the
conservation of mass and the uniform boundedness of ρε

Rε(t) = 1

2π

∫
R2

∫
R2

ρε(x, t)ρε(y, t)
ε2

|x − y|2 + ε2
dx dy

≤ ε

4π

∫
R2

∫
R2

ρε(x, t)ρε(y, t)
1

|x − y|dx dy
≤ εC → 0.

The argument can easily be made rigorous by using compactly supported
approximations of |x |2 on R

2 as test functions, see e.g. also [13]. We finally
obtain (4.22) by integrating in time.

Now, wewant to compare general solutions to (4.1) with its radial solutions.
In order to do this we will make use of the concept of mass concentration,
which has been recalled in 2.4, and used for instance in [44,61] for classical
applications to Keller–Segel type models.

Following exactly the same proof as in [61], the following two results hold
for the solutions of (4.1). The first result says that for two radial solutions, if
one is initially “more concentrated” than the other one, then this property is
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preserved for all time. The second result compares a general (possibly non-
radial) solution ρ(t, ·) with another solution μ(t, ·) with initial data ρ#(0, ·),
i.e., the decreasing rearrangement of the initial data for ρ(t, ·), and it says that
the symmetric rearrangement of ρ(t, ·) is always “less concentrated” than the
radial solutionμ(t, ·). This result generalizes the results from [44] to nonlinear
diffusion with totally different proofs. We also refer the interested reader to
the survey [86] for a general exposition of the mass concentration comparison
results for local nonlinear parabolic equations and to the recent developments
obtained in [88,89] in the context of nonlinear parabolic equations with frac-
tional diffusion.

Proposition 4.13 Let m > 1 and f, g be two radially symmetric solutions to
(4.1) with f (0, ·) ≺ g(0, ·). Then we have f (t, ·) ≺ g(t, ·) for all t > 0.

Proposition 4.14 Let m > 1 and ρ be a solution to (4.1), and let μ be a
solution to (4.1) with initial condition μ(0, ·) = ρ#(0, ·). Then we have that
μ(t, ·) remains radially symmetric for all t ≥ 0, and in addition we have

ρ#(t, ·) ≺ μ(t, ·) for all t ≥ 0.

Now we are ready to bound the second moment of solutions in the two-
dimensional case: we will show that if ρ(t, ·) is a solution to (4.1) with M2[ρ0]
finite, then M2[ρ(t)] must be uniformly bounded for all time.

Theorem 4.15 Letρ0 ∈ L1((1+|x |2)dx)∩L∞(R2). Letρ(t, ·)be the solution
to (4.1) with initial data ρ0. Then we have that

M2[ρ(t)] ≤ M2[ρ0] + C(‖ρ0‖L1) for all t ≥ 0.

Proof Recalling that ρM is the unique radially symmetric stationary solution
with the same mass as ρ0 and zero center of mass, we let ρM,λ := λ2ρM(λx)
with some parameter λ > 1. Since ρ0 ∈ L1(R2) ∩ L∞(R2), we can choose a
sufficiently large λ such that ρ#

0 ≺ ρM,λ. Note that λ > 1 also directly yields
that ρM ≺ ρM,λ.

Let μ(t, ·) be the solution to (4.1) with initial data ρM,λ. Combining Propo-
sition 4.13 and Proposition 4.14, we have that

ρ#(t, ·) ≺ μ(t, ·) for all t ≥ 0.

It then follows from (2.13) and Lemma 2.5 that
∫
R2

ρm(t, x)dx =
∫
R2

[ρ#]m(t, x)dx ≤
∫
R2

μm(t, x)dx for all t ≥ 0.

(4.24)
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Now using the computation of the time derivative of M2[ρ(t)] in (4.22), where
ρ(·, t) is a solution to (4.1), we get

M2[ρ(t)] − M2[ρ0] = 4
∫ t

0

∫
R2

ρm(t, x)dx dt − tM2

2π
. (4.25)

Since μ(t, ·) is also a solution to (4.1), (4.25) also holds when ρ is replaced
by μ. Combining this fact with (4.24), we thus have

M2[ρ(t)] − M2[ρ0] ≤ M2[μ(t)] − M2[μ(0)] ≤ M2[μ(t)]. (4.26)

Finally, it suffices to showM2[μ(t)] is uniformly bounded for all time. Since
ρM is a stationary solution andwehaveρM ≺ ρM,λ, it follows fromProposition
4.13 that ρM ≺ μ(t, ·) for all t ≥ 0, hence we have M2[ρM ] ≥ M2[μ(t)] due
to Lemma 2.6. Plugging this into (4.26) yields

M2[ρ(t)] ≤ M2[ρ0] + M2[ρM ] for all t ≥ 0,

where M2[ρM ] is a constant only depending on the mass M := ‖ρ0‖L1(R2),
which can be computed as follows: using Remark 4.11, we know the support

of ρM is given by the ball centered at 0 of radius R(M) = C0M
m−2

2(m−1) (where
C0 is the radius of the support for the stationary solutionwith unit mass), hence

M2[ρM ] ≤ MR(M)2 ≤ C2
0M

2m−3
m−1 . ��

Remark 4.16 The last result showing uniform-in-time bounds for the second
moment for m > 1 finite is also interesting in comparison to the results in
[42,43] where the case m → ∞ limit of the gradient flow is analysed. In the
“m = ∞” case, the second moment of any solution is actually decreasing
in time, leading to the result that all solutions converge towards the global
minimizer with some explicit rate. As mentioned in the introduction, a result
of this sort for any other potential rather than the attractive logarithmic potential
is lacking.

As already mentioned above, a key ingredient in the proof of Theorem 4.12
is the confinement of mass, which is first now obtained as follows:

Lemma 4.17 Let ρ be a global weak solution as in Theorem 4.1 with mass
M with initial data ρ0 ∈ L1((1 + |x |2)dx) ∩ L∞(R2) and consider as above
the sequence {ρk}k∈N = {ρ(· + tk, ·)}k∈N in (0, T ) × R

2. Then there exists a
ρ ∈ L1((0, T ) × R

2) ∩ Lm((0, T ) × R
2) and a subsequence, that we denote

with the same index without loss of generality, such that:

ρk(t, x) ⇀ ρ(t, x) in L1((0, T ) × R
2) ∩ Lm((0, T ) × R

2)

as k → ∞.
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Proof Due to the entropy being uniformly bounded from below and by the
entropy inequality (4.2), we have ρk ∈ L∞((0, T ); Lm(R2)). Using Theo-
rem 4.15, we deduce that

M2[ρk(t)] ≤ M2[ρ0] + C(‖ρ0‖L1(R2)) for all k ∈ N and 0 ≤ t ≤ T .

(4.27)

Since {ρk}k∈N are also uniformly bounded in L∞(0, T ; Lm(R2)) we obtain
equi-integrability and can therefore apply the Dunford–Pettis theorem (see
Theorem 4.21 in “Appendix”) to obtain the weak convergence in L1((0, T ) ×
R
2) ∩ Lm((0, T ) × R

2). ��
In order to obtainweak lower semicontinuity of the entropy dissipation term,

we need additional convergence results. These are derived from the following
uniform bounds:

Lemma 4.18 Let ρ be a global weak solution as in Theorem 4.1 with mass M
and consider as above the sequence {ρk}k∈N = {ρ(·+tk, ·)}k∈N in (0, T )×R

2.
Then

‖ρk‖L∞(0,T ;L1(R2)) + ‖ρk‖L∞((0,T )×R2) ≤ C

‖√ρk∇N ∗ ρk‖L2((0,T )×R2) + ‖∇N ∗ ρk‖L∞((0,T )×R2) ≤ C

‖∂tρk‖L2(0,T ;H−1(R2)) + ‖ρq
k ‖L2(0,T ;H1(R2)) ≤ C for any q ≥ m − 1

2
.

Proof The bounds are obtained from the energy-energy dissipation inequality
(4.3) in an analogous way to the ones given in Lemma 4.7 with the only
difference concerning the replacement ofNε byN , which however makes no
difference in the estimate (4.12). ��

Using these estimates the following convergence properties can be derived
in an analogous way to the proof of Lemma 4.8.

Lemma 4.19 Let the assumptions of Lemma 4.17 hold. Then, up to subse-
quences that we denote with the same index,

ρk → ρ in Lq((0, T ) × R
2)) for any 1 ≤ q < ∞ ,

ρ
p
k ⇀ ρ p in L2(0, T ; H1(R2)) for any m − 1

2 ≤ p < ∞,
√

ρk → √
ρ in L2((0, T ) × R

2) .

These convergence results from Lemma 4.19 and Lemma 4.17 are sufficient to
obtain the weak convergence of the nonlinearities

√
ρk∇h[ρk] and ρk∇h[ρk]

in L2((0, T )×R
2), which allows to deduce the weak lower semicontinuity of
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the entropy dissipation term and to pass to the limit in the weak formulation
of (4.1) in the same way as in the proof of Lemma 4.9.

Lemma 4.20 Let ρk and ρ be as in Lemma 4.19. Then

√
ρk ∇h[ρk] ⇀

√
ρ ∇h[ρ] in L2((0, T ) × R

2;R2)

ρk ∇h[ρk] ⇀ ρ ∇h[ρ] in L2((0, T ) × R
2;R2) .

This enables us to close the proof of convergence towards the set of station-
ary states.

Proof of Theorem 4.12 Let us first notice that ρ ∈ L∞((0, T ) × R
2) due to

the first convergence in Lemma 4.19 and the uniform in time bound on the
weak solutions in Theorem 4.1. Due to the weak lower semicontinuity of the
L2((0, T ) × R

2)-norm and the bound from below of the entropy as done in
Proposition 4.3 implies that D[ρk] → 0 in L1(0, T ), and as consequence

‖√ρ|∇h[ρ]|‖2L2((0,T )×R2)
≤ lim inf

k→∞ ‖√ρk |∇h[ρk]|‖2L2((0,T )×R2)
= 0 .

Thus ρ solves

ρ|∇h[ρ]|2 = 0 a.e. in (0, T ) × R
2 . (4.28)

Moreover, due to the convergence properties in Lemmas 4.19 and 4.20 the
limiting density ρ is a weak distributional solution to (4.1) with test functions
is L2(0, T ; H1(R2)). Due to (4.28), we get that ρ∇h[ρ] = 0 a.e. in (0, T )×R

2

and thus ∂tρ = 0 in L2(0, T ; H−1(R2)). This yields that ρ(t, x) ≡ ρ(x) does
not depend on time.

Due to the convergence properties in Lemma 4.19, the uniform bound on
the second moment (4.27) together with Lemma 4.22 in the “Appendix”, we
can deduce that ρ ∈ L1((1+|x |2)dx) and that ρk → ρ in L∞(0, T ; L1(R2)).
In particular, ρ has mass M .

Putting together all the properties of ρ just proved together with the fact
that ∇ρm ∈ L2(R2) due to Lemma 4.19, we infer that ρ corresponds to a
steady state of Eq. (4.1) in the sense of Definition 2.1. The uniqueness up to
translation of stationary states in Theorem 4.10 shows that ρ is a translation
of ρM , and thus ρ ∈ S. In fact, we have shown that the limit of all convergent
sequences {ρk}k∈N must be a translation of ρM . This in turn shows that the set
of accumulation points of any time diverging sequence belongs to S.

Finally, in order to identify uniquely the limit,we take advantage of the trans-
lational invariance. We first remark that the center of mass of the initial data
is preserved for all time due to the antisymmetry of ∇N . Due to Proposition
4.15, all time diverging sequences have uniformly bounded second moments,
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thus since ρ is an accumulation point of a sequence ρk , by Lemma 4.22 we
have
∣∣∣∣
∫
R2

xρ(x)dx − xcM

∣∣∣∣
=
∣∣∣∣
∫
R2

x(ρ(x) − ρk(t, x))dx −
∫
R2

x(ρk(t, x) − ρ0(x))dx

∣∣∣∣
≤
∫
R2

|x ||ρ(x) − ρk(t, x)|dx ≤ M2[|ρk(t) − ρ|]1/2‖ρk(t) − ρ‖1/2
L1(R2)

≤ C‖ρk(t) − ρ‖1/2
L∞(0,T ;L1(R2))

→ 0.

Hence all accumulation points of the sequences have the same center of mass
as the initial data. Then, all possible limits reduce to the translation of ρM to
the initial center of mass as desired. ��
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Appendix

Theorem 4.21 (Dunford–Pettis Theorem) Let (X, �, μ) be a probability
space and F be a bounded subset of L1(μ). Then F is equi-integrable if
and only if F is a relatively compact subset in L1(μ) with the weak topology.

Lemma 4.22 Let ( fε) be a sequence of non-negative functions uniformly
bounded in the space L∞(0, T ; L1

log(R
2) ∩ L∞(R2)) with ‖ fε‖L1(R2) =

‖ f ‖L1(R2) = M. Assume moreover that fε → f a.e. in R
2 × (0, T ). Then,

f ∈ L∞(0, T ; L1
log(R

2) ∩ L∞(R2)) and

fε → f in L∞(0, T ; L1(R2)) .
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The same result holds by replacing the logarithmic moment by the second
moment, i.e., by replacing L1

log(R
2) by L1((1 + |x |2)dx) everywhere.

Proof A similar argument was used in the proof of Proposition 2.1 in [52].
First observe that by the Fatou lemma, for any m > 1

sup
(0,T )

∫
f mdx = sup

(0,T )

∫
lim
ε→0

f mε dx ≤ lim inf
ε→0

sup
(0,T )

∫
f mε dx ≤ C.

Let now L > 1 and gε = min{ fε, L}. Then gε → g = min{ f, L} a.e. Let
moreover R > 1, then by the dominated convergence, it holds for sufficiently
small ε > 0 on the ball BR(0):

sup
(0,T )

∫
BR(0)

|gε − g|dx ≤ C

Lm−1 .

and we obtain

sup
(0,T )

∫
BR(0)

| fε − f |dx

≤ sup
(0,T )

∫
BR(0)

| fε − gε|dx + sup
(0,T )

∫
BR(0)

|gε − g|dx + sup
(0,T )

∫
BR(0)

|g − f |dx

≤ sup
(0,T )

∫
{ fε≥L}∩BR(0)

( fε − L)dx + 1

Lm−1 + sup
(0,T )

∫
{ f ≥L}∩BR(0)

( f − L)dx

≤ sup
(0,T )

∫
BR(0)

f mε
Lm−1 dx + C

Lm−1 + sup
(0,T )

∫
BR(0)

f m

Lm−1 dx ≤ 3C

Lm−1 .

Using additionally the confinement ofmass from the boundon the log-moment,
we obtain

sup
(0,T )

∫
{|x |>R}

| fε − f |dx ≤
∫
R2

log(1 + |x |2)
log(1 + R2)

| fε − f |dx

≤ C

log(1 + R2)
→ 0 as R → ∞.

Since L > 1 is arbitrary and m > 1, this shows that fε → f strongly in
L∞(0, T ; L1(R2)). The proof in casewe replace L1

log(R
2) by L1((1+|x |2)dx)

is done analogously. ��
For the proof of the followingDubinskii Lemmawe refer to [30] or Theorem

12.1 in [66]:
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Lemma 4.23 Let  ⊂ R
2 be bounded with ∂ ∈ C0,1 and let { fε}, 0 < ε <

1, satisfy

‖∂t fε‖L1(0,T ;(Hs())′) + ‖ f pε ‖Lq (0,T ;H1()) ≤ C,

for some p ≥ 1, q ≥ 1 and s ≥ 0. Then { fε} is relatively compact in
L pl(0, T ; Lr ()) for any r < ∞ and l < q.
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