36 research outputs found

    Evaluation of the limitations and methods to improve rapid phage-based detection of viable Mycobacterium avium subsp. paratuberculosis in the blood of experimentally infected cattle

    Get PDF
    Background Disseminated infection and bacteraemia is an underreported and under-researched aspect of Johne’s disease. This is mainly due to the time it takes for Mycobacterium avium subsp. paratuberculosis (MAP) to grow and lack of sensitivity of culture. Viable MAP cells can be detected in the blood of cattle suffering from Johne’s disease within 48 h using peptide-mediated magnetic separation (PMMS) followed by bacteriophage amplification. The aim of this study was to demonstrate the first detection of MAP in the blood of experimentally exposed cattle using the PMMS-bacteriophage assay and to compare these results with the immune response of the animal based on serum ELISA and shedding of MAP by faecal culture. Results Using the PMMS-phage assay, seven out of the 19 (37 %) MAP-exposed animals that were tested were positive for viable MAP cells although very low numbers of MAP were detected. Two of these animals were positive by faecal culture and one was positive by serum ELISA. There was no correlation between PMMS-phage assay results and the faecal and serum ELISA results. None of the control animals (10) were positive for MAP using any of the four detection methods. Investigations carried out into the efficiency of the assay; found that the PMMS step was the limiting factor reducing the sensitivity of the phage assay. A modified method using the phage assay directly on isolated peripheral blood mononuclear cells (without PMMS) was found to be superior to the PMMS isolation step. Conclusions This proof of concept study has shown that viable MAP cells are present in the blood of MAP-exposed cattle prior to the onset of clinical signs. Although only one time point was tested, the ability to detect viable MAP in the blood of subclinically infected animals by the rapid phage-based method has the potential to increase the understanding of the pathogenesis of Johne’s disease progression by warranting further research on the presence of MAP in blood

    Encephalomyocarditis virus may use different pathways to initiateinfection of primary human cardiomyocytes

    Get PDF
    Encephalomyocarditis virus (EMCV) caninfect a wide range of vertebrate species including swineand non-human primates, but few data are available forhumans. We therefore wanted to gain further insight intothe mechanisms involved in EMCV infection of humancells. For this purpose, we analyzed the permissiveness ofprimary human cardiomyocytes towards two strains ofEMCV; a pig myocardial strain (B279/95) and a rat strain(1086C). In this study, we show that both strains productivelyinfect primary human cardiomyocytes and inducecomplete cytolysis. Binding and infection inhibitionexperiments indicated that attachment and infection areindependent of sialic acid and heparan sulfate for B279/95and dependent for 1086C. Sequence comparison betweenthe two strains and three-dimensional analysis of the capsidrevealed that six of the seven variable residues are surfaceexposed,suggesting a role for these amino acids in binding.Moreover, analysis of variants isolated from the 1086Cstrain revealed the importance of lysine 231 of VP1 in theattachment of EMCV to cell-surface sialic acid residues.Together, these results show a potential for EMCV strainsto use at least two different binding possibilities to initiateinfection and provide new insights into the mechanismsinvolved in primary human cell recognition by EMCV

    Encephalomyocarditis virus infection in an Italian zoo

    Get PDF
    A fatal Encephalomyocarditis virus (EMCV) infection epidemic involving fifteen primates occurred between October 2006 and February 2007 at the Natura Viva Zoo. This large open-field zoo park located near Lake Garda in Northern Italy hosts one thousand animals belonging to one hundred and fifty different species, including various lemur species. This lemur collection is the most relevant and rich in Italy. A second outbreak between September and November 2008 involved three lemurs. In all cases, the clinical signs were sudden deaths generally without any evident symptoms or only with mild unspecific clinical signs. Gross pathologic changes were characterized by myocarditis (diffuse or focal pallor of the myocardium), pulmonary congestion, emphysema, oedema and thoracic fluid. The EMCV was isolated and recognized as the causative agent of both outbreaks. The first outbreak in particular was associated with a rodent plague, confirming that rats are an important risk factor for the occurrence of the EMCV infection

    A Novel Multi-Antigen Virally Vectored Vaccine against Mycobacterium avium Subspecies paratuberculosis

    Get PDF
    BACKGROUND: Mycobacterium avium subspecies paratuberculosis causes systemic infection and chronic intestinal inflammation in many species including primates. Humans are exposed through milk and from sources of environmental contamination. Hitherto, the only vaccines available against Mycobacterium avium subspecies paratuberculosis have been limited to veterinary use and comprised attenuated or killed organisms. METHODS: We developed a vaccine comprising a fusion construct designated HAV, containing components of two secreted and two cell surface Mycobacterium avium subspecies paratuberculosis proteins. HAV was transformed into DNA, human Adenovirus 5 (Ad5) and Modified Vaccinia Ankara (MVA) delivery vectors. Full length expression of the predicted 95 kDa fusion protein was confirmed. PRINCIPAL FINDINGS: Vaccination of naïve and Mycobacterium avium subspecies paratuberculosis infected C57BL/6 mice using DNA-prime/MVA-boost or Ad5-prime/MVA-boost protocols was highly immunogenic resulting in significant IFN-gamma ELISPOT responses by splenocytes against recombinant vaccine antigens and a range of HAV specific peptides. This included strong recognition of a T-cell epitope GFAEINPIA located near the C-terminus of the fusion protein. Antibody responses to recombinant vaccine antigens and HAV specific peptides but not GFAEINPIA, also occurred. No immune recognition of vaccine antigens occurred in any sham vaccinated Mycobacterium avium subspecies paratuberculosis infected mice. Vaccination using either protocol significantly attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection measured by qPCR in spleen and liver and the Ad5-prime/MVA-boost protocol also conferred some protection against subsequent challenge. No adverse effects of vaccination occurred in any of the mice. CONCLUSIONS/SIGNIFICANCE: A range of modern veterinary and clinical vaccines for the treatment and prevention of disease caused by Mycobacterium avium subspecies paratuberculosis are needed. The present vaccine proved to be highly immunogenic without adverse effect in mice and both attenuated pre-existing Mycobacterium avium subspecies paratuberculosis infection and conferred protection against subsequent challenge. Further studies of the present vaccine in naturally infected animals and humans are indicated

    Neuro-angiostrongylosis in wild Black and Grey-headed flying foxes (Pteropus spp)

    Get PDF
    Objective To identify nematodes seen in histological sections of brains of flying foxes (fruit bats) and describe the associated clinical disease and pathology. Proceedures Gross and histological examination of brains from 86 free-living flying foxes with neurological disease was done as part of an ongoing surveillance program for Australian bat lyssavirus. Worms were recovered, or if seen in histological sections, extracted by maceration of half the brain and identified by microscopic examination. Histological archives were also reviewed. Results There was histological evidence of angiostrongylosis in 16 of 86 recently submitted flying foxes with neurological disease and in one archival case from 1992. In 10 flying foxes, worms were definitively identified as Angiostrongylus cantonensis fifth-stage larvae. A worm fragment and third stage larvae were identified as Angiostrongylus sp, presumably A cantonensis, in a further three cases. The clinical picture was dominated by paresis, particularly of the hind-limbs, and depression, with flying foxes surviving up to 22 days in the care of wildlife volunteers. Brains containing fifth-stage larvae showed a moderate to severe eosinophilic and granulomatous meningoencephalitis (n = 14), whereas there was virtually no inflammation of the brains of bats which died when infected with only smaller, third-stage larvae (n = 3). There was no histological evidence of pulmonary involvement. Conclusion This is the first report of the recovery and identification of A cantonensis from free-living Australian wildlife. While anglostrongylosis is a common cause of paresis in flying foxes, the initial clinical course cannot be differentiated from Australian bat lyssavirus infection, and wildlife carers should be urged not to attempt to rehabilitate flying foxes with neurological disease

    Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus

    No full text
    We evaluated a fluorogenic probe–based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21–4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations
    corecore