3,396 research outputs found

    Optimal Trajectory Planning for Autonomous Driving Integrating Logical Constraints: An MIQP Perspective

    No full text
    International audienceThis paper considers the problem of optimal trajectory generation for autonomous driving under both continuous and logical constraints. Classical approaches based on continuous optimization formulate the trajectory generation problem as a nonlinear program, in which vehicle dynamics and obstacle avoidance requirements are enforced as nonlinear equality and inequality constraints. In general, gradient-based optimization methods are then used to find the optimal trajectory. However, these methods are ill-suited for logical constraints such as those raised by traffic rules, presence of obstacles and, more generally, to the existence of multiple maneuver variants. We propose a new formulation of the trajectory planning problem as a Mixed-Integer Quadratic Program. This formulation can be solved effectively using widely available solvers, and the resulting trajectory is guaranteed to be globally optimal. We apply our framework to several scenarios that are still widely considered as challenging for autonomous driving, such as obstacle avoidance with multiple maneuver choices, overtaking with oncoming traffic or optimal lane-change decision making. Simulation results demonstrate the effectiveness of our approach and its real-time applicability

    The Sensitivity of the Redshift Distribution to Galaxy Demographics

    Full text link
    Photometric redshifts are commonly used to measure the distribution of galaxies in large surveys. However, the demands of ongoing and future large-scale cosmology surveys place very stringent limits on the redshift performance that are difficult to meet. A new approach to meet this precision need is forward modelling, which is underpinned by realistic simulations. In the work presented here, we use simulations to study the sensitivity of redshift distributions to the underlying galaxy population demographics. We do this by varying the redshift evolving parameters of the Schechter function for two galaxy populations, star-forming and quenched galaxies. Each population is characterised by eight parameters. We find that the redshift distribution of shallow surveys, such as SDSS, is mainly sensitive to the parameters for quenched galaxies. However, for deeper surveys such as DES and HSC, the star-forming parameters have a stronger impact on the redshift distribution. Specifically, the slope of the characteristic magnitude, aMa_\mathrm{M}, for star-forming galaxies has overall the strongest impact on the redshift distribution. Decreasing aMa_\mathrm{M} by 148 per cent (its given uncertainty) shifts the mean redshift by 45{\sim} 45 per cent. We explore which combination of colour and magnitude measurements are most sensitive to aMa_\mathrm{M} and we find that each colour-magnitude pair studied is similarly affected by a modification of aMa_\mathrm{M}

    Stretching and contraction of extensional basins with pre-rift salt: a numerical modelling approach

    Get PDF
    We present a series of 2D thermo-mechanical numerical experiments of thick-skinned crustal extension including a pre-rift salt horizon and subsequent thin-, thick-skinned, or mixed styles of convergence accompanied by surface processes. Extension localization along steep basement faults produces half-graben structures and leads to variations in the original distribution of pre-rift salt. Thick-skinned extension rate and salt rheology control hanging wall accommodation space as well as the locus and timing of minibasin grounding. Upon shortening, extension-related basement steps hinder forward propagation of evolving shallow thrust systems; conversely, if full basin inversion takes place along every individual fault, the regional salt layer is placed back to its pre-extensional configuration, constituting a regionally continuous décollement. Continued shortening and basement involvement deform the shallow fold-thrust structures and locally breaches the shallow décollement. We aim at obtaining a series of structural, stratigraphic and kinematic templates of fold-and-thrust belts involving rift basins with an intervening pre-rift salt horizon. Numerical results are compared to natural cases of salt-related inversion tectonics to better understand their structural evolution

    Mixed Valvular Disease Following Transcatheter Aortic Valve Replacement: Quantification and Systematic Differentiation Using Clinical Measurements and Image-Based Patient‐Specific In Silico Modeling

    Get PDF
    Background: Mixed valvular disease (MVD), mitral regurgitation (MR) from pre‐existing disease in conjunction with paravalvular leak (PVL) following transcatheter aortic valve replacement (TAVR), is one of the most important stimuli for left ventricle (LV) dysfunction, associated with cardiac mortality. Despite the prevalence of MVD, the quantitative understanding of the interplay between pre‐existing MVD, PVL, LV, and post‐TAVR recovery is meager. Methods and Results: We quantified the effects of MVD on valvular‐ventricular hemodynamics using an image‐based patient‐specific computational framework in 72 MVD patients. Doppler pressure was reduced by TAVR (mean, 77%; N=72; P<0.05), but it was not always accompanied by improvements in LV workload. TAVR had no effect on LV workload in 22 patients, and LV workload post‐TAVR significantly rose in 32 other patients. TAVR reduced LV workload in only 18 patients (25%). PVL significantly alters LV flow and increases shear stress on transcatheter aortic valve leaflets. It interacts with mitral inflow and elevates shear stresses on mitral valve and is one of the main contributors in worsening of MR post‐TAVR. MR worsened in 32 patients post‐TAVR and did not improve in 18 other patients. Conclusions: PVL limits the benefit of TAVR by increasing LV load and worsening of MR and heart failure. Post‐TAVR, most MVD patients (75% of N=72; P<0.05) showed no improvements or even worsening of LV workload, whereas the majority of patients with PVL, but without that pre‐existing MR condition (60% of N=48; P<0.05), showed improvements in LV workload. MR and its exacerbation by PVL may hinder the success of TAVR

    Genomics-Based Identifcation of Microorganisms in Human Ocular Body Fluid

    Get PDF
    Abstract Advances in genomics have the potential to revolutionize clinical diagnostics. Here, we examine the microbiome of vitreous (intraocular body fluid) from patients who developed endophthalmitis following cataract surgery or intravitreal injection. Endophthalmitis is an inflammation of the intraocular cavity and can lead to a permanent loss of vision. As controls, we included vitreous from endophthalmitis-negative patients, balanced salt solution used during vitrectomy and DNA extraction blanks. We compared two DNA isolation procedures and found that an ultraclean production of reagents appeared to reduce background DNA in these low microbial biomass samples. We created a curated microbial genome database (>5700 genomes) and designed a metagenomics workflow with filtering steps to reduce DNA sequences originating from: (i) human hosts, (ii) ambiguousness/contaminants in public microbial reference genomes and (iii) the environment. Our metagenomic read classification revealed in nearly all cases the same microorganism that was determined in cultivation- and mass spectrometry-based analyses. For some patients, we identified the sequence type of the microorganism and antibiotic resistance genes through analyses of whole genome sequence (WGS) assemblies of isolates and metagenomic assemblies. Together, we conclude that genomics-based analyses of human ocular body fluid specimens can provide actionable information relevant to infectious disease management

    Patient-specific quality assurance strategies for synthetic computed tomography in magnetic resonance-only radiotherapy of the abdomen

    Full text link
    BACKGROUND AND PURPOSE The superior tissue contrast of magnetic resonance (MR) compared to computed tomography (CT) led to an increasing interest towards MR-only radiotherapy. For the latter, the dose calculation should be performed on a synthetic CT (sCT). Patient-specific quality assurance (PSQA) methods have not been established yet and this study aimed to assess several software-based solutions. MATERIALS AND METHODS A retrospective study was performed on 20 patients treated at an MR-Linac, which were selected to evenly cover four subcategories: (i) standard, (ii) air pockets, (iii) lung and (iv) implant cases. The neural network (NN) CycleGAN was adopted to generate a reference sCT, which was then compared to four PSQA methods: (A) water override of body, (B) five tissue classes with bulk densities, (C) sCT generated by a separate NN (pix2pix) and (D) deformed CT. RESULTS The evaluation of the dose endpoints demonstrated that while all methods A-D provided statistically equivalent results (p = 0.05) within the 2% level for the standard cases (i), only the methods C-D guaranteed the same result over the whole cohort. The bulk densities override was shown to be a valuable method in absence of lung tissue within the beam path. CONCLUSION The observations of this study suggested that the use of an additional sCT generated by a separate NN was an appropriate tool to perform PSQA of a sCT in an MR-only workflow at an MR-Linac. The time and dose endpoints requirements were respected, namely within 10 min and 2%

    Synthetic computed tomography for low-field magnetic resonance-guided radiotherapy in the abdomen

    Full text link
    Background and purpose The requirement of computed tomography (CT) for radiotherapy planning may be bypassed by synthetic CT (sCT) generated from magnetic resonance (MR), which has recently led to the clinical introduction of MR-only radiotherapy for specific sites. Further developments are required for abdominal sCT, mostly due to the presence of mobile air pockets affecting the dose calculation. In this study we aimed to overcome this limitation for abdominal sCT at a low field (0.35 T) hybrid MR-Linac. Materials and methods A retrospective analysis was conducted enrolling 168 patients corresponding to 215 MR-CT pairs. After the exclusion criteria, 152 volumetric images were used to train the cycle-consistent generative adversarial network (CycleGAN) and 34 to test the sCT. Image similarity metrics and dose recalculation analysis were performed. Results The generated sCT faithfully reproduced the original CT and the location of the air pockets agreed with the MR scan. The dose calculation did not require manual bulk density overrides and the mean deviations of the dose-volume histogram dosimetric points were within 1 % of the CT, without any outlier above 2 %. The mean gamma passing rates were above 99 % for the 2 %/ 2 mm analysis and no cases below 95 % were observed. Conclusions This study presented the implementation of CycleGAN to perform sCT generation in the abdominal region for a low field hybrid MR-Linac. The sCT was shown to correctly allocate the electron density for the mobile air pockets and the dosimetric analysis demonstrated the potential for future implementation of MR-only radiotherapy in the abdomen
    corecore