82 research outputs found

    Electrospun nanofibrous meshes cultured with Wharton’s Jelly Stem Cell: an alternative for cartilage regeneration, without the need of growth factors

    Get PDF
    Many efforts are being directed worldwide to the treatment of OA-focal lesions. The majority of those efforts comprise either the refinement of surgical techniques or combinations of biomaterials with various autologous cells. Herein, we tested electrospun polycaprolactone (PCL) nanofibrous meshes for cartilage tissue engineering. For that, articular chondrocytes (hACs) isolated from human osteoarthritic joints and Whartonñ s Jelly Stem Cells (hWJSCs) are cultured on electrospun nanofiber meshes, without adding external growth factors. We observed higher glycosaminoglycans production and higher overexpression of cartilage-related genes from hWJSCs cultured with basal medium, when compared to hACs isolated from osteoarthritic joints. Moreover, the presence of sulfated proteoglycans and collagen type II is observed on both types of cell cultures. We believe that this effect is due to either the electrospun nanofibers topography or the intrinsic chondrogenic differentiation potential of hWJSCs. Therefore, we propose the electrospun nanofibrous scaffolds in combination with hWJSCs as a viable alternative to the commercial membranes used in autologous chondrogenic regeneration approaches.The authors thank the Portuguese Foundation for Science and Technology for the Post-Doc grant of Marta Alves da Silva (SFRH/BPD/73322/2010, financed by POPH QREN Tipologia 4.1 – Advanced Formation, co-financed by Fundo Social Europeu and MEC national funds). This work was supported by the project SPARTAN (PTDC/CTM-BIO/4388/2014) FCT/MEC with PIDDAC funds. It was also partly supported by the POLARIS (FP7-REGPOT-2012-2013-1) and the Project “New methodologies for the isolation and control of stem cells differentiation using advanced culturing conditions and/or nanomaterials” (RL2 SCN NORTE-01-0124-FEDER-000018), co-financed by North Portugal Regional Operational Programme (ON.2 – O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio

    Too close for comfort: spatial patterns in acorn barnacle populations

    Get PDF
    Spatial patterns in aggregations form as a result of the interplay between costs and benefits experienced by individuals. Such self-organisation of aggregations can be explained using a zonal model in which a short-range zone of repulsion and longer-range zone of attraction surrounding individuals leads to emergent pattern properties. The signal of these processes can be detected using spatial pattern analyses. Furthermore, in sessile organisms, post-settlement mortality reveals the relative costs and benefits of positions within the aggregation. Acorn barnacles are known to require contact with conspecifics for reproduction and are therefore believed to aggregate for this purpose; isolated individuals may also be more susceptible to abiotic stress and predation. At short distances, however, competition for space and resources is likely to occur. In this study spatial patterns of barnacles (Semibalanus balanoides L.) were analysed using pair-correlation functions. Individuals were dispersed at distances below 0.30 cm, but peak relative density occurred at a distance of 0.36 cm from conspecifics. This is much closer than required for reproductive access, implying a strong aggregative drive, up to the point of physical contact with neighbours. Nevertheless, analysis of dead barnacles illustrated that such proximity carries a cost as barnacles with many neighbours were more likely to have died. The inferences obtained from these patterns are that barnacles aggregate as closely as they can, and that local neighbourhood competition is a powerful determinant of mortality. These processes give rise to the observed pattern properties

    A new technique for seeding chondrocytes onto solvent-preserved human meniscus using the chemokinetic effect of recombinant human bone morphogenetic protein-2

    Get PDF
    Many investigators are currently studying the use of decellularized tissue allografts from human cadavers as scaffolds onto which patients’ cells could be seeded, or as carriers for genetically engineered cells to aid cell transplantation. However, it is difficult to seed cells onto very dense regular connective tissue which has few interstitial spaces. Here, we discuss the development of a chemotactic cell seeding technique using solvent-preserved human meniscus. A chemokinetic response to recombinant human bone morphogenetic protein-2 (rhBMP-2) was observed in a monolayer culture of primary chondrocytes derived from femoral epiphyseal cartilage of 2-day-old rats. The rhBMP-2 significantly increased their migration upto 10 ng/ml in a dose-dependent manner. When tested with solvent-preserved human meniscus as a scaffold, which has few interstitial spaces, rhBMP-2 was able to induce chondrocytes to migrate into the meniscus. After a 3-week incubation, newly-formed cartilaginous extracellular matrix was synthesized by migrated chondrocytes throughout the meniscus, down to a depth of 3 mm. These findings demonstrate that rhBMP-2 may be a natural chemokinetic factor in vivo, which induces migration of proliferative chondrocytes into the narrow interfibrous spaces. Our results suggest a potential application of rhBMP-2 for the designed distribution of chondrocytes into a scaffold to be used for tissue engineering

    Tissue engineering of functional articular cartilage: the current status

    Get PDF
    Osteoarthritis is a degenerative joint disease characterized by pain and disability. It involves all ages and 70% of people aged >65 have some degree of osteoarthritis. Natural cartilage repair is limited because chondrocyte density and metabolism are low and cartilage has no blood supply. The results of joint-preserving treatment protocols such as debridement, mosaicplasty, perichondrium transplantation and autologous chondrocyte implantation vary largely and the average long-term result is unsatisfactory. One reason for limited clinical success is that most treatments require new cartilage to be formed at the site of a defect. However, the mechanical conditions at such sites are unfavorable for repair of the original damaged cartilage. Therefore, it is unlikely that healthy cartilage would form at these locations. The most promising method to circumvent this problem is to engineer mechanically stable cartilage ex vivo and to implant that into the damaged tissue area. This review outlines the issues related to the composition and functionality of tissue-engineered cartilage. In particular, the focus will be on the parameters cell source, signaling molecules, scaffolds and mechanical stimulation. In addition, the current status of tissue engineering of cartilage will be discussed, with the focus on extracellular matrix content, structure and its functionality

    Oxygen Tension Is a Determinant of the Matrix-Forming Phenotype of Cultured Human Meniscal Fibrochondrocytes

    Get PDF
    BACKGROUND: Meniscal cartilage displays a poor repair capacity, especially when injury is located in the avascular region of the tissue. Cell-based tissue engineering strategies to generate functional meniscus substitutes is a promising approach to treat meniscus injuries. Meniscus fibrochondrocytes (MFC) can be used in this approach. However, MFC are unable to retain their phenotype when expanded in culture. In this study, we explored the effect of oxygen tension on MFC expansion and on their matrix-forming phenotype. METHODOLOGY/PRINCIPAL FINDINGS: MFC were isolated from human menisci followed by basic fibroblast growth factor (FGF-2) mediated cell expansion in monolayer culture under normoxia (21%O(2)) or hypoxia (3%O(2)). Normoxia and hypoxia expanded MFC were seeded on to a collagen scaffold. The MFC seeded scaffolds (constructs) were cultured in a serum free chondrogenic medium for 3 weeks under normoxia and hypoxia. Constructs containing normoxia-expanded MFC were subsequently cultured under normoxia while those formed from hypoxia-expanded MFC were subsequently cultured under hypoxia. After 3 weeks of in vitro culture, the constructs were assessed biochemically, histologically and for gene expression via real-time reverse transcription-PCR assays. The results showed that constructs under normoxia produced a matrix with enhanced mRNA ratio (3.5-fold higher; p<0.001) of collagen type II to I. This was confirmed by enhanced deposition of collagen II using immuno-histochemistry. Furthermore, the constructs under hypoxia produced a matrix with higher mRNA ratio of aggrecan to versican (3.5-fold, p<0.05). However, both constructs had the same capacity to produce a glycosaminoglycan (GAG) -specific extracellular matrix. CONCLUSIONS: Our data provide evidence that oxygen tension is a key player in determining the matrix phenotype of cultured MFC. These findings suggest that the use of normal and low oxygen tension during MFC expansion and subsequent neo-tissue formation cultures may be important in engineering different regions of the meniscus

    Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Highly active anti-retroviral therapy (HAART) is the current HIV/AIDS treatment modality. Despite the fact that HAART is very effective in suppressing HIV-1 replication and reducing the mortality of HIV/AIDS patients, it has become increasingly clear that HAART does not offer an ultimate cure to HIV/AIDS. The high cost of the HAART regimen has impeded its delivery to over 90% of the HIV/AIDS population in the world. This reality has urgently called for the need to develop inexpensive alternative anti-HIV/AIDS therapy. This need has further manifested by recent clinical trial failures in anti-HIV-1 vaccines and microbicides. In the current study, we characterized a panel of extracts of traditional Chinese medicinal herbal plants for their activities against HIV-1 replication.</p> <p>Methods</p> <p>Crude and fractionated extracts were prepared from various parts of nine traditional Chinese medicinal herbal plants in Hainan Island, China. These extracts were first screened for their anti-HIV activity and cytotoxicity in human CD4+ Jurkat cells. Then, a single-round pseudotyped HIV-luciferase reporter virus system (HIV-Luc) was used to identify potential anti-HIV mechanisms of these extracts.</p> <p>Results</p> <p>Two extracts, one from <it>Euphorbiaceae</it>, <it>Trigonostema xyphophylloides </it>(TXE) and one from <it>Dipterocarpaceae</it>, <it>Vatica astrotricha </it>(VAD) inhibited HIV-1 replication and syncytia formation in CD4+ Jurkat cells, and had little adverse effects on host cell proliferation and survival. TXE and VAD did not show any direct inhibitory effects on the HIV-1 RT enzymatic activity. Treatment of these two extracts during the infection significantly blocked infection of the reporter virus. However, pre-treatment of the reporter virus with the extracts and treatment of the extracts post-infection had little effects on the infectivity or gene expression of the reporter virus.</p> <p>Conclusion</p> <p>These results demonstrate that TXE and VAD inhibit HIV-1 replication likely by blocking HIV-1 interaction with target cells, i.e., the interaction between gp120 and CD4/CCR5 or gp120 and CD4/CXCR4 and point to the potential of developing these two extracts to be HIV-1 entry inhibitors.</p
    • 

    corecore