27 research outputs found

    Strain-Driven Mn-Reorganization in Overlithiated LixMn2O4 Epitaxial Thin-Film Electrodes

    Get PDF
    Lithium manganate LixMn2O4 (LMO) is a lithium ion cathode that suffers from the widely observed but poorly understood phenomenon of capacity loss due to Mn dissolution during electrochemical cycling. Here, operando X-ray reflectivity (low- and high-angle) is used to study the structure and morphology of epitaxial LMO (111) thin film cathodes undergoing lithium insertion and extraction to understand the inter-relationships between biaxial strain and Mn-dissolution. The initially strain-relieved LiMn2O4 films generate in-plane tensile and compressive strains for delithiated (x 1) charge states, respectively. The results reveal reversible Li insertion into LMO with no measurable Mn-loss for 0 1) reveals Mn loss from LMO along with dramatic changes in the intensity of the (111) Bragg peak that cannot be explained by Li stoichiometry. These results reveal a partially reversible site reorganization of Mn ions within the LMO film that is not seen in bulk reactions and indicates a transition in Mn-layer stoichiometry from 3:1 to 2:2 in alternating cation planes. Density functional theory calculations confirm that compressive strains (at x = 2) stabilize LMO structures with 2:2 Mn site distributions, therefore providing new insights into the role of lattice strain in the stability of LMO

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Polynucleotide Adsorption to Negatively Charged Surfaces in Divalent Salt Solutions

    Get PDF
    Polynucleotide adsorption to negatively charged surfaces via divalent ions is extensively used in the study of biological systems. We analyze here the adsorption mechanism via a self-consistent mean-field model that includes the pH effect on the surface-charge density and the interactions between divalent ions and surface groups. The adsorption is driven by the cooperative effect of divalent metal ion condensation along polynucleotides and their reaction with the surface groups. Although the apparent reaction constants are enhanced by the presence of polynucleotides, the difference between reaction constants of different divalent ions at the ideal condition explains why not all divalent cations mediate DNA adsorption onto anionic surfaces. Calculated divalent salt concentration and pH value variations on polynucleotide adsorption are consistent with atomic force microscope results. Here we use long-period x-ray standing waves to study the adsorption of mercurated-polyuridylic acid in a ZnCl(2) aqueous solution onto a negatively charged hydroxyl-terminated silica surface. These in situ x-ray measurements, which simultaneously reveal the Hg and Zn distribution profiles along the surface normal direction, are in good agreement with our model. The model also provides the effects of polyelectrolyte line-charge density and monovalent salt on adsorption

    High Aspect Ratio Nanotubes Assembled from Macrocyclic Iminium Salts

    No full text
    One-dimensional nanostructures such as carbon nanotubes rely on strong and directional interactions that stabilize their high aspect ratio shapes from fracture. This requirement has precluded making isolated, long, thin organic nanotubes by stacking molecular macrocycles, as their noncovalent stacking interactions are generally too weak. Here we report high aspect ratio (>103), lyotropic nanotubes of stacked, macrocyclic, iminium salts, which are formed by protonation of the corresponding imine-linked macrocycles. Iminium ion formation establishes cohesive interactions that are two orders-of-magnitude stronger than the neutral macrocycles, as estimated by molecular dynamics simulations. Nanotube formation stabilizes the iminium ions, which otherwise rapidly hydrolyze, and is reversed and restored upon addition of bases and acids. Acids generated by irradiating a photoacid generator or sonicating chlorinated solvents also induced nanotube assembly, allowing these nanostructures to be coupled to diverse stimuli, and, once assembled, they can be fixed permanently by crosslinking their pendant alkenes. As the largest, and the first macrocyclic chromonic liquid crystals, macrocyclic iminium salts are easily accessible through a modular design and provide a means to rationally synthesize structures that mimic the morphology and rheology of carbon nanotubes and biological tubules.</p

    Counterion Distribution Surrounding Spherical Nucleic Acid–Au Nanoparticle Conjugates Probed by Small-Angle X‑ray Scattering

    No full text
    The radial distribution of monovalent cations surrounding spherical nucleic acid–Au nanoparticle conjugates (SNA-AuNPs) is determined by <i>in situ</i> small-angle x-ray scattering (SAXS) and classical density functional theory (DFT) calculations. Small differences in SAXS intensity profiles from SNA-AuNPs dispersed in a series of solutions containing different monovalent ions (Na<sup>+</sup>, K<sup>+</sup>, Rb<sup>+</sup>, or Cs<sup>+</sup>) are measured. Using the “heavy ion replacement” SAXS (HIRSAXS) approach, we extract the cation-distribution-dependent contribution to the SAXS intensity and show that it agrees with DFT predictions. The experiment–theory comparisons reveal the radial distribution of cations as well as the conformation of the DNA in the SNA shell. The analysis shows an enhancement to the average cation concentration in the SNA shell that can be up to 15-fold, depending on the bulk solution ionic concentration. The study demonstrates the feasibility of HIRSAXS in probing the distribution of monovalent cations surrounding nanoparticles with an electron dense core (<i>e.g.</i>, metals)

    Electrolyte-Mediated Assembly of Charged Nanoparticles

    No full text
    Solutions at high salt concentrations are used to crystallize or segregate charged colloids, including proteins and polyelectrolytes via a complex mechanism referred to as “salting-out”. Here, we combine small-angle X-ray scattering (SAXS), molecular dynamics (MD) simulations, and liquid-state theory to show that salting-out is a long-range interaction, which is controlled by electrolyte concentration and colloid charge density. As a model system, we analyze Au nanoparticles coated with noncomplementary DNA designed to prevent interparticle assembly via Watson–Crick hybridization. SAXS shows that these highly charged nanoparticles undergo “gas” to face-centered cubic (FCC) to “glass-like” transitions with increasing NaCl or CaCl<sub>2</sub> concentration. MD simulations reveal that the crystallization is concomitant with interparticle interactions changing from purely repulsive to a “long-range potential well” condition. Liquid-state theory explains this attraction as a sum of cohesive and depletion forces that originate from the interelectrolyte ion and electrolyte–ion–nanoparticle positional correlations. Our work provides fundamental insights <i>into the effect of ionic correlations</i> in the salting-out mechanism and suggests new routes for the crystallization of colloids and proteins using concentrated salts

    Electrostatic Control of Polymorphism in Charged Amphiphile Assemblies

    Get PDF
    Stimuli-induced structural transformations of molecular assemblies in aqueous solutions are integral to nanotechnological applications and biological processes. In particular, pH responsive amphiphiles as well as proteins with various degrees of ionization can reconfigure in response to pH variations. Here, we use in situ small and wide-angle X-ray scattering (SAXS/WAXS), transmission electron microscopy (TEM), and Monte Carlo simulations to show how charge regulation via pH induces morphological changes in the assembly of a positively charged peptide amphiphile (PA). Monte Carlo simulations and pH titration measurements reveal that ionic correlations in the PA assemblies shift the ionizable amine p<i>K</i> ∌ 8 from p<i>K</i> ∌ 10 in the lysine headgroup. SAXS and TEM show that with increasing pH, the assembly undergoes spherical micelle to cylindrical nanofiber to planar bilayer transitions. SAXS/WAXS reveal that the bilayer leaflets are interdigitated with the tilted PA lipid tails crystallized on a rectangular lattice. The details of the molecular packing in the membrane result from interplay between steric and van der Waals interactions. We speculate that this packing motif is a general feature of bilayers comprised of amphiphilic lipids with large ionic headgroups. Overall, our studies correlate the molecular charge and the morphology for a pH-responsive PA system and provide insights into the Å-scale molecular packing in such assemblies
    corecore