753 research outputs found

    Editorial: Cancer Nanotheranostics: What Have We Learned So Far?

    Get PDF
    According to the National Cancer Institute, in 2015 an estimated of 1.7 million new cases of cancer will be diagnosed only in the United States and around 600, 000 people will die from the disease. The most common type of cancer is breast cancer, with more than 234, 000 new cases expected in the United States in 2015. The next most common cancers are prostate cancer and lung cancer.After a quarter of century of rapid technological advances, research has revealed the complexity of cancer, a disease intimately related to the dynamic transformation of the genome. These transformations trigger a range of modification to cell processes and molecular events that initiate and promote tumor genesis and progression, then local invasion and metastasis, i.e., the hallmarks of cancer development. These alterations may cause a wide scope of “diseases” that share similar molecular patterns that cause transformation and malignancy. Each of this stepwise evolution of the initial molecular event drives abnormal growth and loss of differentiation that ultimately causes tissue and organ failure. The initial molecular event may lay within the erroneous expression of a given gene, epigenetic modification and/or sporadic mutations occurring on genomic DNA during the life span of organisms. Each and every one of these molecular events may be evaluated and used as diagnostics biomarker and therapeutic target. For example, therapy action may target a mutated gene and silence its expression so as to avoid erroneous protein expression that mutates cell function. However, the full understanding of the molecular onset of this disease is still far from achieved and the search for mechanisms of treatment will follow closely..

    Self interacting Brans Dicke cosmology and Quintessence

    Get PDF
    Recent cosmological observations reveal that we are living in a flat accelerated expanding universe. In this work we have investigated the nature of the potential compatible with the power law expansion of the universe in a self interacting Brans Dicke cosmology with a perfect fluid background and have analyzed whether this potential supports the accelerated expansion. It is found that positive power law potential is relevant in this scenario and can drive accelerated expansion for negative Brans Dicke coupling parameter ω\omega. The evolution of the density perturbation is also analyzed in this scenerio and is seen that the model allows growing modes for negative ω\omega.Comment: 8pages, 5 figures, PRD style, some changes are made, figures added, reference added. To be published in Int. J. Mod. Phys.

    RNA quantification using gold nanoprobes - application to cancer diagnostics

    Get PDF
    Molecular nanodiagnostics applied to cancer may provide rapid and sensitive detection of cancer related molecular alterations, which would enable early detection even when those alterations occur only in a small percentage of cells. The use of gold nanoparticles derivatized with thiol modified oligonucleotides (Au-nanoprobes) for the detection of specific nucleic acid targets has been gaining momentum as an alternative to more traditional methodologies. Here, we present an Au-nanoparticles based approach for the molecular recognition and quantification of the BCR-ABL fusion transcript (mRNA), which is responsible for chronic myeloid leukemia (CML), and to the best of our knowledge it is the first time quantification of a specific mRNA directly in cancer cells is reported. This inexpensive and very easy to perform Au-nanoprobe based method allows quantification of unamplified total human RNA and specific detection of the oncogene transcript. The sensitivity settled by the Au-nanoprobes allows differential gene expression from 10 ng/μl of total RNA and takes less than 30 min to complete after total RNA extraction, minimizing RNA degradation. Also, at later stages, accumulation of malignant mutations may lead to resistance to chemotherapy and consequently poor outcome. Such a method, allowing for fast and direct detection and quantification of the chimeric BCR-ABL mRNA, could speed up diagnostics and, if appropriate, revision of therapy. This assay may constitute a promising tool in early diagnosis of CML and could easily be extended to further target genes with proven involvement in cancer development

    Density Perturbations in the Brans-Dicke Theory

    Get PDF
    We analyse the fate of density perturbation in the Brans-Dicke Theory, giving a general classification of the solutions of the perturbed equations when the scale factor of the background evolves as a power law. We study with details the cases of vacuum, inflation, radiation and incoherent matter. We find, for the a negative Brans-Dicke parameter, a significant amplification of perturbations.Comment: 26 pages, latex fil

    Mean pulmonary arterial pressure after percutaneous mitral valvuloplasty predicts long-term adverse outcomes

    Get PDF
    INTRODUCTION AND AIM: Percutaneous mitral valvuloplasty (PMV) is an effective treatment option for mitral stenosis (MS), but its success is assessed on the basis of clinical and echocardiographic outcomes in studies with relatively short follow-up. We aimed to characterize a cohort of patients undergoing PMV with long-term follow-up and to determine independent predictors of post-PMV mitral re-intervention and event-free survival. METHODS: We studied 91 consecutive patients with MS who underwent PMV with a median clinical follow-up duration of 99 months. Two endpoints were considered: post-PMV mitral re-intervention (PMV or mitral surgery) and a composite clinical events endpoint including cardiovascular death, mitral valve re-intervention and hospital admission due to decompensated heart failure. We compared patients who required post-PMV mitral re-intervention with those who did not during follow-up. RESULTS: The study population included 83.5% females and mean age was 48.9±13.9 years. The 1-, 3-, 5-, 7- and 9-year rates of clinical event-free survival were 93.0±2.8%, 86.0±3.9%, 81.0±4.4%, 70.6±5.6%, and 68.4±5.8%, respectively. The 1-, 3-, 5-, 7- and 9-year rates of mitral re-intervention-free survival were 98.8±1.2%, 97.5±1.7%, 92.1±3.1%, 85.5±4.5%, and 85.5±4.5%, respectively. The median time to mitral re-intervention was 6.2 years. Patients who required mitral re-intervention during follow-up were younger (43.3 vs. 51.2 years, p=0.04) and had higher pre- and post-PMV mitral gradient (14.9 vs. 11.5mmHg, p=0.02 and 6.4 vs. 2.1mmHg, p<0.001) and higher post-PMV mean pulmonary artery pressure (mPAP) (30.0 vs. 23.2mmHg, p=0.01). In a Cox proportional hazards model, mPAP ≥25mmHg was the sole predictor of both mitral re-intervention (HR 5.639 [1.246-25.528], p=0.025) and clinical events (HR 3.622 [1.070-12.260], p=0.039). CONCLUSION: In our population, immediate post-PMV mPAP was the sole predictor of post-PMV mitral intervention. These findings may help identify patients in need of closer post-PMV follow-up

    Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine

    Get PDF
    FP7-PEOPLE-2013-IOF, Project no. 626386 PEst-OE/SAU/U10009/2011-14 MAT2011-26851-C02-01In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.publishersversionpublishe

    Temporal patterns of honey bee (Apis mellifera L.) mitochondrial DNA variation in the archipelago of Azores (Portugal)

    Get PDF
    Morphological and molecular studies have been carried out on different Mediterranean and Atlantic island populations of honey bees. A previous genetic survey of the Azorean honey bees, carried out by De la Rúa and colleagues (2006), showed their genetic distinctiveness from continental populations and their close relationship with NW African populations. Herein we present the results of a more comprehensive survey (samples collected from all the islands of the archipelago) of the mitochondrial DNA variation exhibited by the honey bee populations of Azores. Using previously obtained results from honey bee samples collected in 2001, we assess the temporal maternal variation of these populations over a 9 year time frame

    Experimental results and modelling of humidity control strategies for greenhouses in continental and coastal settings in the Mediterranean region. I: Experimental results and model development

    Get PDF
    Experimental strategies for controlling humidity were compared in a greenhouse sited in Madrid, a continental site in the Mediterranean region. Small roof window apertures significantly reduced the relative humidity with only a limited increase in associated energy consumption. A simplified climate model with four energy exchange terms (heating, insolation, losses through structure, and losses through windows) and three mass exchange terms (evapotranspiration, losses through structure, and losses through windows) was validated, allowing relative humidity to be predicted with an error of < 9%
    corecore