43 research outputs found

    Structure–property relationships of low sintering temperature scheelite-structured (1 − x)BiVO 4 –xLaNbO 4 microwave dielectric ceramics

    Get PDF
    A series of (1 − x)BiVO4–xLaNbO4 (0.0 ≤ x ≤ 1.0) ceramics were prepared via a solid state reaction method. A scheelite-structured solid solution was formed for x ≤ 0.5 but for x > 0.5, tetragonal scheelite, monoclinic LaNbO4-type and La1/3NbO3 phases co-existed. As x increased from 0 to 0.1, the room temperature crystal structure gradually changed from monoclinic to tetragonal scheelite, associated with a decrease in the ferroelastic phase transition temperature from 255 °C (BiVO4) to room temperature or even below. High sintering temperatures were also found to accelerate this phase transition for compositions with x ≤ 0.08. Temperature independent high quality factor Qf >10 000 GHz in a wide temperature range 25–140 °C and high microwave permittivity εr ∼76.3 ± 0.5 was obtained for the x = 0.06 ceramic sintered at 800 °C. However, small changes in composition resulted in a change in the sign and magnitude of the temperature coefficient of resonant frequency (TCF) due to the proximity of the ferroelastic transition to room temperature. If TCF can be controlled and tuned through zero, then (1 − x)BiVO4–xLaNbO4 (0.0 ≤ x ≤ 1.0) is a strong candidate for microwave device applications

    Temperature stable K0.5(Nd1−xBix)0.5MoO4 microwave dielectrics ceramics with ultra-low sintering temperature

    Get PDF
    K 0.5 (Nd 1-x Bi x ) 0.5 MoO 4 (0.2 ≤ x ≤ 0.7) ceramics were prepared via the solid-state reaction method. All ceramics densified below 720°C with a uniform microstructure. As x increased from 0.2 to 0.7, relative permittivity (e(open) r ) increased from 13.6 to 26.2 commensurate with an increase in temperature coefficient of resonant frequency (TCF) from - 31 ppm/°C to + 60 ppm/°C and a decrease in Qf value (Q = quality factor; f = resonant frequency) from 23 400 to 8620 GHz. Optimum TCF was obtained for x = 0.3 (-15 ppm/°C) and 0.4 (+4 ppm/°C) sintered at 660 and 620°C with e(open) r ~15.4, Q f ~19 650 GHz, and e(open) r ~17.3, Q f ~13 050 GHz, respectively. Ceramics in this novel solid solution are a candidate for ultra low temperature co-fired ceramic (ULTCC) technology
    corecore