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Abstract: 

Among the various SIBs cathode materials, NaFePO4 attracts much attention owing to its high 

theoretical capacity (155 mAh g
−1

), low cost, high structural stability, and non-toxicity. 

Nevertheless, the NaFePO4 with maricite structure, thermodynamically stable phase, has been 

considered as electrochemically inactive for sodium-ion storage. In this work, we succeeded in 

tuning the degree of disorder in NaFePO4 cathode material by a mechanochemical route to enhance 

electrochemical performances of Na-ion batteries. The derived NaFePO4 cathodes containing both 

amorphous and maricite phases exhibit much improved sodium storage performance with an initial 

capacity of 115 mAh g
−1

 at 1 C and an excellent cycling stability of capacity retention of 91.3% 

after 800 cycles. By X-ray absorption near edge and Raman spectroscopy, we revealed the 

atom-scale structural origin of the enhanced Na-storage performances of the amorphous NaFePO4 

electrode. The transformation of edge-sharing FeO6 octahedra into various FeOn polyhedra upon 

amorphization was found to be a key to attain the superior performances for Na ion batteries. 
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Introduction 

Owing to their potential broad applications in power tools, electric vehicles, and solar energy setup, 

LiFePO4 compounds have attracted much attention of energy scientists and technologists. The major 

commercial advantages of these compounds originate from their thermodynamically stable olivine 

structure. This structure exhibits high stability against charging/discharging cycling, and even at 

high temperatures, gives the safety of batteries in repeated high-current discharge rate applications, 

and can be economically generated [1-4]. Driven by the large-scale energy storage ability and the 

abundant cheap resources of sodium, Na ion batteries have been considered as a promising 

alternative to Li ion batteries [5-11]. According to literatures [12-14], it was possible to fabricate the 

olivine NaFePO4 as high-performance cathode with high theoretical capacity (155 mAh g
−1

) for Na 

ion batteries, however, the complexity of the fabrication process impeded its application. The 

thermodynamically stable olivine phase in the Li bearing iron phosphate compounds, which contain 

one-dimensional channels for Li diffusion, is not favored in the sodium analogue [14, 15]. The 

thermodynamically favorable phase in the Na counterpart is the maricite, which has been 

experimentally found to be electrochemically inactive under normal battery operating voltages 

(0~4.5 V). Its electrochemical inactivity has been attributed to the fact that the cavities with trapped 

Na ions are not connected by pathways [16]. 
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However, it was remarkable that maricite NaFePO4 could be transformed into amorphous 

phase through the first charging at 4.5 V holding for 5 hrs [17]. By this transformation, the battery 

with NaFePO4 cathode reached a reversible capacity of 142 mAh g
−1

 (92% of the theoretical value) 

at 0.05 C at the first cycle and an outstanding cyclability with a 95% retention after 200 cycles. This 

unexpected performance was ascribed to the highly electrochemical active amorphous NaFePO4 

phase, in which the hopping active barrier of Na
+
 is about 20% of that of the maricite NaFePO4 

phase according to the quantum mechanics calculations. This discovery intrigues much interest of 

scientists in amorphization of maricite NaFePO4 by many routes. Recently, using a similar 

amorphization method, Liu et al. further enhanced the desodiation by minimizing the size of the 

precursor maricite NaFePO4 through the electro-spinning technique [18]. They achieved the 

capacity of 145 mAh g
−1

 at 0.2 C, the rate capability of 61 mAh g
−1

 at 50 C, and unprecedentedly 

high cycling stability, i.e., 89% capacity retention after 6300 cycles. Honma et al.[19] found that the 

cathode performances of sodium iron phosphate glass can be enhanced by increasing the FeO 

content and thereby attained a maximum capacity of 115 mAh g
−1

 at 0.1 C for the 40FeO·60NaPO3 

glass. However, the NaFePO4 glass has not been successfully made by the conventional 

melt-quenching technique due to the strong tendency of its melt to crystallize. It was found that 

mechanochemical treatment, i.e., planetary ball milling could activate, i.e., introduce disorder into 

NaFePO4 and thereby enhanced its electrochemical properties [20, 21]. 

It is worth mentioning that the disorder/order engineering concept was recently introduced by 

Zhang et al to enhance the electrochemical performances of glassy anodes for lithium ion battery 

[22]. In contrast to inducing the disorder in crystalline NaFePO4 via battery high potential charging 

[17, 18], ball-milling [20, 21] and melt-quenching [19], they found that a certain degree of order 

(nano-crystals) in the glass phase can be induced by the first few cycles of charging/discharging, 

and the cyclability of the anode was improved. 

Despite numerous studies, the structural origin of amorphous NaFePO4 as a high-active 

cathode for Na-ion batteries remains unrevealed. In this work, we fabricate the polymorphic 

NaFePO4 composites (containing maricite, amorphous phase and carbon) by the mechanochemical 

method as the cathode materials of Na-ion batteries. The composites with different degrees of 
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disorder were synthesized and used to clarify the relation between amorphous phase and sodium 

storage capacity. The polymorphic composite with optimized milling parameters displays an 

enhanced sodium storage capacity of 115 mAh g
−1

 and excellent cycling stability reflected by the 

capacity retention of 91.3% after 800 cycles. To discover the atomistic origin of disordered 

NaFePO4 with enhanced cathode performances, we performed structural characterizations on the 

three NaFePO4 phases including maricite, olivine, and amorphous phase by X-ray absorption near 

edge (XANE) and Raman spectroscopy. Base on the characterization results, we propose a 

structural model of purely amorphous NaFePO4 to explain the activated sodium storage capacity. 

 

Experimental Section 

Samples synthesis 

Maricite NaFePO4 was synthesized according to the following procedure. FeSO4·7H2O, 

NaH2PO4·2H2O and citric acid (all are analytically pure and purchased from Sinopharm Chemical 

Reagent Co., Ltd. Shanghai, China) with the 1:1:1.5 molar ratio were dissolved into deionized water. 

After stirring vigorously for 10 min, the solution was heated to 160 °C and hold for 12 hrs to obtain 

the dried precursor. Then the precursor was heat-treated at 300 °C in air for 4 hrs and further 

calcined at 600 °C in Ar for 10 hrs. Finally, the polymorphic composites were obtained using a 

high-energy planetary ball mill (Pulverisette-7 premium line; Fritsch, Idar-Obserstein, Germany) at 

800 rpm for 5, 10, 15, 20, 25 hrs. The mass ratio of the powder and ZrO2 balls (3 mm in diameter) 

is ~1:15. To avoid agglomeration, 1.5 mL isopropyl alcohol was added to the pot as an inert process 

control agent, which had little influence on the milled sample structure [23, 24]. 

Olivine NaFePO4 was obtained from olivine LiFePO4 via chemical delithiation and followed 

by sodiation [13, 14]. The LiFePO4 was synthesized by the same procedure of maricite NaFePO4 

with replacing NaH2PO4·2H2O by LiH2PO4 (99%, Aladdin). The chemical delithiation and 

sodiation processes were performed in a glove box. The 0.1 g synthesized LiFePO4 was added into 

a solution of 0.2 g NO2BF4 (98%, Sigma-Aldrich) in 10 mL acetonitrile (99.8%, Sinopharm). After 

stirring for 24 hrs, the delithiated LiFePO4 powder was obtained via filtering and drying. Then, the 

delithiated LiFePO4 was added into a solution of 0.3 g NaI (99.0%, Sinopharm) in 10 mL 
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acetonitrile, and the mixture was stirred at 60 ℃ for 48 hrs. Finally, the olivine NaFePO4 was 

obtained after filtered and dried. 

Materials characterization 

X-ray diffraction (XRD) measurements were performed to investigate the crystallographic structure 

using a D8 Advance X-ray diffractometer with a nonmonochromated Cu Kα X-ray source. Field 

emission scanning electron microscopy (FESEM) images were collected with a JEOL-7100F 

microscope at an acceleration voltage of 20 kV. Transmission electron microscopy (TEM), high 

resolution TEM (HRTEM), high-angle annular dark field scanning transmission electron 

microscopy (HAADF-STEM) images and Energy dispersive spectrometer (EDS) mapping were 

recorded by using a Titan G2 60-300 microscope. Raman spectra were obtained using a HORIBA 

LabRAM HR Evolution micro-Raman spectroscopy system with the 633 nm laser. The carbon 

content analyses were performed by Elementar Vario EL cube elemental analyzer. The differential 

scanning calorimetry (DSC) analysis was performed at 10 K min
−1

 to a certain temperature in Ar 

using STA 449 F1 thermal analyzer. The Na K- and O K-edge X-ray absorption near edge structure 

spectra (XANES) were measured in fluorescence mode at beamline 4B7B (soft X-ray) of Beijing 

Synchrotron Radiation Facility (BSRF). 

Computational method 

All calculation on NaFePO4 were conducted by Generalized Gradient Approximation (GGA) with 

the Perdew–Burke–Ernzerhof (PBE) [25] exchange-correlation parameterization to Density 

Functional Theory (DFT) using Dmol
3
 code [26]. The 5.0 Å global Orbital cutoff was employed as 

the maximum value from all the cutoffs specific to each element in this system, and meanwhile a (1 

× 1 × 1) k-point grid was applied. DFT Semi-core Pseudopots (DSPPs) were used to describe the 

interactions between valence electrons and ionic cores. The geometry optimization parameters for 

the total energy convergence and the max ionic force were 10
-5

 Ha and 2×10
-5 

Ha Å
-1

,
 
respectively. 

The nudged elastic band (NEB) [27] method was employed to obtain the minimum energy paths 

(MEPs) of Na jumps between the corresponding neighboring sites. A threshold of 0.02 Ha Å
-1

 was 

set for the total force acting on the NEB images of the interpolated reaction paths. 

Battery assembling and electrochemical characterization 
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CR2016-type coin cells were assembled in a glove box (O2≤1 ppm and H2O≤1 ppm), which used 

the sodium foil as the anode and the glassy fiber (GF/D Whatman) as the separator. The electrolyte 

was composed of 1 M NaPF6 dissolved in EC (ethylene carbonate)/PC (propylene carbonate) with 

volume ratio of 1:1. Cathodes were obtained with 60% as-synthesized active materials, 30% 

acetylene black and 10% poly(tetrafluoroethylene) (PTFE), and the mass loading of active material 

was about 3–4 mg cm
−2

. Electrochemical performances were characterized by measuring the 

galvanostatic charge/discharge cycling behavior in a potential range of 1.5–4.5 V (vs. Na
+
/Na) with 

a multichannel battery testing system (LAND CT2001A). The cyclic voltammetry (CV) curves 

were obtained by using a VMP3 multichannel electrochemical workstation (Bio-Logic France). 

Results 

Electrochemical performances 

The coin-type cells with sodium metal anode were assembled to evaluate the sodium storage 

performance of the as-prepared maricite NaFePO4 and the milling-derived polymorphic composites 

with different degrees of disorder obtained at 800 rpm for 5, 10, 15, 20 and 25 hrs. Galvanostatic 

discharge/charge cycles and corresponding charge/discharge curves of the six samples at 1 C (1 C = 

155 mA g
−1

) in the potential range of 1.5-4.5 V are shown in Fig. 1a and Fig. S1, respectively. 

Similar to previous studies [16], the as-prepared maricite NaFePO4 delivered a maximum specific 

capacity of 36 mAh g
−1

 for the initial discharge and rapidly drop to 18 mAh g
−1

 for the second 

discharge, meaning that the maricite NaFePO4 is electrochemically inactive, due to the absence of 

channels for sodium transport in the closed maricite framework [14]. Through the high-energy 

ball-milling approach, the obtained polymorphic composites exhibit enhanced specific capacities, 

i.e., 50 mAh g
−1

 by milling for 5 hrs, 75 mAh g
−1

 for 10 hrs, up to about 115 mAh g
−1

 for 15, 20 or 

25 hrs. Hereafter, we focused on the characteristics of the polymorphic composites obtained by 

milling for 15 hrs (NFP-15). As indicated by the charge/discharge curves at 1 C (Fig. 1b), NFP-15 

displays a slope plateau with an average potential of about 2.5 V, which is in line with the 

previously reported results [17].The broad redox peaks can be seen in the CV curves of NFP-15 

(Fig. S2), and correspond to the slope plateaus. Even after 800 cycles at 1 C, NFP-15 still delivers a 

high reversible capacity of 105 mAh g
−1

 (Fig. 1c), and the capacity retention of 91.3%. This cycling 
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life is longer than that of the most reported maricite NaFePO4 based materials [16, 17, 19, 21, 28]. 

Besides, this cycling performance is better than that of many reported crystal Fe-based cathode 

materials for sodium-ion battery (Table S1), indicating the superiority of as-synthesized 

polymorphic NaFePO4 composites [29-34]. In Fig. 1d, we can see the feasibility of the NFP-15 

composite for high power applications, since it exhibits the capacity of 52 mAh g
−1

 even at the rate 

of 10 C, which can quickly return to a higher level of 67, 90 and 100 mAh g
−1

 at 5 C, 2 C and 1 C, 

respectively. 

 

Structure of polymorphic composites 

XRD analysis (Fig. S3) of as-prepared maricite sample gives the evidence for the pure single phase, 

i.e., the maricite-type NaFePO4 phase (JCPDS No. 029-1216). The HRTEM image of this 

as-prepared sample (Fig. 2e) further verifies the existence of the single phase as we can see a clear 

lattice fringe with inter-planar distance of 2.69 Å corresponding to the d-space of (211) facets of 

maricite-type NaFePO4. Furthermore, the HRTEM image of the as-synthesized samples (Fig. S4a) 

indicates a non-uniform size distribution of NaFePO4 nanoparticles in the range from 100 to 600 nm 

embedded in the carbon matrix. Finally, according to the CHN elemental analysis, the carbon 

content of as-synthesized samples is around 10 wt%. Considering the theoretical densities of carbon 

and maricite NaFePO4 (about 1.80-2.00 [35] and 3.69 [36, 37] g cm
−3

, respectively), the volume 

fraction of carbon should be higher than 20% (percolation threshold), implying that the percolation 

networks of carbon is established. 

Through a high-energy ball-milling approach, we can partially amorphize the as-synthesized 

maricite-type NaFePO4. As shown in Fig. S1, after milling at 800 rpm for 5, 10, 15, 20 and 25 hrs, 

all the XRD patterns show a similar profile, i.e., the sharp diffraction peaks disappear except for the 

weak and broad peak located at about 33°, indicating the partial amorphization. HRTEM images of 

these samples (Fig. 2f, g; Fig. S4f) further demonstrate the structural characteristics of polymorphic 

composites. Atomic-scale indiscernible interfaces imply that there is the chemical bonding between 

the embedded maricite and amorphous matrix NaFePO4. The stronger mixed ionic and covalent 

bonds of P-O or Fe-O in the interfacial region should play a key role in enhancing the 
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electrochemical cycling stability. This maricite/amorphous composite structure may improve the 

crack resistance by blocking the propagation of localized shear bands, and then enhance cycling 

stability by alleviating the crack-induced capacity fading [38-40]. After 100 cycles at 1 C, the 

ordered nano-domains can also be observed in the HRTEM image for NFP-15 (Fig. S5), indicating 

the good stability of maricite/amorphous composite structure. By controlling the ball-milling 

durations, we were able to modulate the interfacial density and the degree of disorder for NaFePO4. 

According to FESEM images (Fig. 2a-c, Fig. S6), the morphological evolution with an increase of 

milling duration can be viewed from the irregular particles with several micrometers to 

sub-micrometer particles. By further increasing the duration after milling for 15 hrs, we did not 

achieve a distinct reduction in particle size, but observed a slight self-agglomeration. This means 

that it gets more difficult to reduce the particle size further just by increasing ball-milling time. 

Such a morphological evolution can be further verified by the TEM images (Fig. 2d; Figs. S4 a-e). 

EDS mapping (Fig. 2h) demonstrates a uniform Na, Fe, P, O, and C element distribution in the 

polymorphic composite. The existence of the carbon phase can be further verified by the two 

characteristic bands (bands D and G) in the range of 1200-1700 cm
−1

 on the Raman spectra (Fig. 

S7a) [41, 42]. The ratio of intensity for D and G bands can be used as an indicator of the structural 

evolution. However, there is no distinguishable spectral difference among the samples milled for 

various durations, i.e., milling did not cause a detectable structural change. Moreover, the spectrum 

of NFP-15 has been deconvoluted into three peaks by fitting, and the ~1500 cm
−1 

peak was assigned 

to amorphous sp
2
-bonded forms of carbon (Fig. S7b) [43]. 

 

Transitions between NaFePO4 polymorphs 

For the as-synthesized maricite-type NaFePO4, which is the thermodynamically stable phase, no 

detectable calorimetric response occur during heating to 600 ℃ (Fig. 3a). In contrast, for the 

metastable olivine-type phase of NaFePO4 (exhibited by the XRD pattern in Fig. S8), which cannot 

be prepared by the conventional synthetic routes [17, 44], an exothermic peak occurs between 470 

and 520 ℃ during the first DSC upscan. This result implies that the metastable olivine-type phase is 

transformed into the stable maricite-type NaFePO4 [45]. However, the transition is 
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thermodynamically irreversible, and this is confirmed by the second up-scanning (Fig. 3a). For the 

polymorphic composite NFP-15, an even larger exothermic peak appears between 365 to 465 ℃, 

reflecting the higher potential energy state of the amorphous NaFePO4 phase [46] compared to the 

olivine-type phase. In addition, prior to the sharp exothermic response (i.e., crystallization), we did 

not observe the glass transition. The sharp exotherm suggests that the amorphous NaFePO4 is 

extremely unstable against crystallization, i.e., NaFePO4 is a poor glass former, and this was also 

confirmed by the inability to vitrify NaFePO4 by melt-quenching [19]. 

With extending the milling duration, the exotherm is enhanced (Fig. 3b), implying that the 

degree of disorder increases in NaFePO4. Furthermore, the exotherm enhancement could originate 

from the milling-induced rupture and distortion of chemical bonds. To further identify the 

atomic-scale structural change of the polymorphic composites compared to the maricite and olivine 

NaFePO4, we acquired XANE spectra for Na K-edge and O K-edge and the Raman spectra, as 

shown in Fig. 4. 

 

Discussions 

Structural order to disorder transition in NaFePO4 phases 

The Na K-edge XANE spectra of NaFePO4 polymorphic composites obtained by milling at 800 rpm 

for 5, 10, 15, 20, and 25 hrs are similar to that of the maricite phase (Fig. 4a, Fig. S9), but clearly 

differ from that of olivine NaFePO4. This result suggests that the nearest coordination environment 

of Na in the milling-induced amorphous NaFePO4 phase is similar to that in the as-prepared 

maricite phase.  

Regarding the O component (Fig. 4b), the O K-edge XANE spectrum for NFP-15 is more 

similar to that of maricite NaFePO4 compared to olivine NaFePO4. This means that the nearest 

coordination number of O with Na, Fe and P in amorphous NaFePO4 phase is closer to that of 

maricite NaFePO4. According to the dipole selection rule, the O K-edge XANE spectra are due to 

transitions from atomic-like 1s state to unoccupied bound and free states with p-character [47, 48]. 

The sharp peak at about 534 eV should be mainly related to the transition metal Fe 3d states [47, 

48]. The intensity of this peak increases in the order of olivine, maricite and NFP-15 (Fig. 4b). 
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Considering the drop of coordination number of O from olivine type (completely 4) to maricite type 

(4 and 3) NaFePO4, the highest intensity of this peak for the NFP-15 should be due to the further 

decrease of the nearest coordination number of O compared to the maricite type phase. This change 

might be mainly due to the enhancement of hybridization of Fe 3d states and O 2p states [47], 

following the decrease of the coordination number of partial Fe after amorphization. This inference 

can be confirmed by the Raman spectra (analyzed below), where the shortening of Fe-O bond 

length following the reduction of the coordination number is a reflection of the enhancement of 

hybridization of Fe 3d states and O 2p states. 

The similarity of the positions and patterns of characteristic Raman peaks, located at about 950, 

1000, 450, and 600 cm
−1

, which are attributed to the four vibrational modes of isolated PO4
3-

 units, 

indicates that isolated PO4
3-

 structural units remain unaffected during milling-induced 

amorphization process [19, 49, 50]. This preservation of local coordination surroundings in P 

should arise from the stable and strong P-O covalent bonds.  

As shown in Fig.4c, we can see an obvious evolution of the characteristic peaks in the region 

200 ~ 400 cm
−1

. In contrast to the two weak peaks in this region for the olivine-type NaFePO4, three 

strong peaks at 217, 275 and 390 cm
−1 

appears for the maricite-type one. This differences should be 

ascribed to the different FeO6 connecting patterns: corner sharing in olivine-type phase and bridge 

sharing in maricite-type phase [50-52]. Upon only 5 hrs milling (Fig.S10), the characteristic peak at 

390 cm
−1

 disappears. In addition, following the increase of milling time, the other two peaks at 217 

and 275 cm
−1

 become weaker and wider. These evolution indicates that the nearest coordinative 

surroundings of Fe are easy to be changed. Possibly due to relatively weaker Fe-O bonds compared 

to the P-O ones, the ordered FeO6 edge-sharing octahedral chains in the maricite-type phase can be 

easily altered upon milling. And except for the distorted FeO6 octahedra, milling may induce other 

types of Fe-O polyhedra, e.g., tetrahedra and pentahedra. 

Therefore, through the milling-induced amorphization, the short-range order of the amorphous 

NaFePO4 is similar to that of the maricite-type one, except the distinct evolution of coordination 

number of Fe from 6 in maricite type to mainly 4, 5 and 6 in the amorphous one [51]. 

 



11 
 

Mechanism of unlocked sodium storage for amorphous NaFePO4 phase 

Originating from its one-dimensional diffusion tunnel for Na ions (Fig. 5b), metastable olivine 

NaFePO4 can offer a high theoretical capacity of 155 mAh g
−1

 and an operating potential of 2.9 V 

(vs Na
+
/Na) based on the single electron reaction of the Fe

3+/2+
 couple. However, due to the blocked 

ionic diffusion channels between ordered Na sites (Fig. 5c) with high diffusive activation barrier, 

the deintercalation/intercalation of Na ions in thermodynamically stable maricite NaFePO4 are not 

favorable under the normal battery operating conditions, and hence this NaFePO4 phase is 

electrochemical inactive. Upon milling, the derived amorphous NaFePO4 exhibits better 

electrochemical activity due to the enhancement of Na mobility. Different from the mechanism of 

Na ionic transportation in olivine phase, the higher Na diffusivity in amorphous NaFePO4 compared 

to the ordered maricite one should be associated with the statistical distortion and asymmetry of Na 

surroundings (Fig. 5a). Based on the above-mentioned structural analysis of amorphous NaFePO4, 

the statistical distortion and asymmetry of Na sites could result from the broader distribution of Fe- 

or P-O bonds, and especially the alterations of coordination number of Fe from 6 in maricite type to 

mainly 4, 5 or 6 co-existing in amorphous type. It is the statistical distortion and asymmetry of Na 

sites that lead to the enhancement of potential energy and instability of Na sites, and hence, to 

reduction of activation barrier for Na hopping, resulting in a realization of reversible 

insertion/extraction of Na
+
 under normal battery operating conditions.  

Moreover, the DFT calculation was also carried out to confirm the possible sodium-ion 

diffusion pathways (Fig. S11). For simplicity, Model 2 (Fig. S11a), in which two [FeO6] octahedra 

were substituted by two [FeO5] pentahedra according to the maricite type phase structure, was 

established to approximately simulate locally disordered amorphous structure. As shown in Fig. 

S11b and S11c, the diffusion barriers of sodium-ion in Model 2 along with Path 1 or Path 2 are 

much lower than those in Model 1 (pure maricite phase structure). These results indicate that the 

decreased coordination number of Fe in amorphous phase may create possible sodium-ion diffusion 

pathways (Fig. 5a). 
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Conclusion 

To study the structure-electrochemical performance relationship, we fabricated a series of NaFePO4 

polymorphic composites with different degrees of disorder obtained by tuning the ball-milling 

parameters. The optimized initial capacity of 115 mAh g
−1

 at 1 C with the capacity retention of 91.3% 

after 800 cycles was demonstrated, which could be ascribed to the synergistic effect of the active 

amorphous phase favoring the high sodium-ion storage performance and the inactive ordered 

maricite phase boosting the structural stability. By using X-ray diffraction and energy-dispersive 

spectroscopy mapping, high resolution transmission electron microscopy, we revealed the 

polymorphic composite nature of ordered maricite NaFePO4 crystals embedded into amorphous 

matrix. Through detailed structural characterizations, we elucidated the atomistic structural origin 

of the amorphous NaFePO4 being a highly active cathode material for Na-ion batteries, and 

revealed that the evolution of Fe local surroundings from edge-sharing FeO6 octahedra to FeOn 

polyhedra was a key factor for the enhanced electrochemical performances. This work provides a 

new insight into the atomistic mechanism of the enhanced sodium-ion storage performance for 

amorphous NaFePO4, and is helpful for developing new battery materials through disorder 

engineering. 
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Fig. 1 Sodium-ion storage performance. (a) Cycling stability at 1 C (1 C = 155 mA g
-1

) of the 

polymorphic composites obtained by milling at 600 rpm for 5, 10, 15, 20, and 25 hours, together 

with the as-prepared maricite NaFePO4; (b) The charge/discharge curves at 1C of the polymorphic 

composites obtained by milling at 600 rpm for 15 hours (NFP-15); (c) The long-term cycling 

stability up to 800 cycles at 1 C of NFP-15. (d) The rate performance of NFP-15; The voltage 

window is within the range of 1.5 and 4.5 V, sodium pellet as the anode, and NaPF6 with 1 mol L
-1

 

dissolved in an equal volume ratio EC-PC solution as the electrolyte. 
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Fig. 2 Structure and morphology of polymorphic composites. (a-c) FESEM images of the 

as-prepared maricite NaFePO4 (a), polymorphic composites obtained by milling at 600 rpm for 5 

hrs (b) and 15 hrs (NFP-15) (c). (d) The TEM image of NFP-15; (e-g) HRTEM images of the 

as-prepared maricite NaFePO4(e), polymorphic composites obtained by milling at 800 rpm for 5 hrs 

(f) and 15 hrs (g); (h) The HAADF image together with EDS elemental mappings of Na, Fe, P, O, C 

for NFP-15. 
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Figure 3 Phase transitions of NaFePO4 on heating. (a) Calorimetric plots of polymorphic 

composites through milling for 5, 10, 15 (NFP-15), 20, 25 hrs together with the as-prepared 

maricite-type NaFePO4. (b) Thermo-gravimetric analysis and calorimetric plots, showing the 

exothermic recrystallization peaked at 425 ℃ of the NFP-15 composite, as well as the apparent 

irreversible phase transition peaked at 500 ℃ from olivine-type to maricite-type NaFePO4. 
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Fig. 4 Structural differences of NaFePO4 phases. X-ray absorption near edge structure spectra of 

(a) Na K-edge, (b) O K-edge for olivine-type, maricite-type and polymorphic composites obtained 

by milling for 15 hrs (NFP-15), together with their Raman spectra (c). 
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Fig. 5 Schematic illustrations for Na diffusive mechanism. (a) Possible sodium-ion diffusive 

pathways and atomistic structure for amorphous NaFePO4. Structural sketching diagrams of (b) 

olivine-type NaFePO4 and (c) maricite-type NaFePO4. 
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Highlights 

 The atomistic origin of the enhanced Na-storage performance of amorphous NaFePO4 was 

uncovered. 

 We succeeded in tuning the degree of disorder in NaFePO4 cathode material by a 

mechanochemical route. 

 The excellent cycling stability (capacity retention of 91.3% after 800 cycles) was attained. 

 




