13 research outputs found

    Long-term trends, current status, and transitions of water quality in Chesapeake Bay

    Get PDF
    Coincident climatic and human effects strongly influence water-quality properties in estuarine-coastal ecosystems around the world. Time-series data for a number of ecosystems reveal high spatio-temporal variability superimposed on secular trends traceable to nutrient over-enrichment. In this paper, we present new analyses of long-term data for Chesapeake Bay directed at several goals: (1) to distinguish trends from spatio-temporal variability imposed by climatic effects; (2) to assess long-term trends of water-quality properties reflecting degradation and recovery; (3) to propose numerical water-quality criteria as targets for restoration; (4) to assess progress toward attainment of these targets. The bay has experienced multiple impairments associated with nutrient over-enrichment since World War II, e.g., low dissolved oxygen (DO), decreased water clarity, and harmful algal blooms (HAB). Anthropogenic eutrophication has been expressed as increased chlorophyll-a (chl-a) driven by accelerated nutrient loading from 1945 to 1980. Management intervention led to decreased loading thereafter, but deleterious symptoms of excess nutrients persist. Climatic effects exemplified by irregular “dry” and “wet” periods in the last 30+ years largely explain high inter-annual variability of water-quality properties, requiring adjustments to resolve long-term trends. Here, we extend these analyses at a finer temporal scale to six decades of chl-a, Secchi depth, and nitrite plus nitrate (NO 2 + NO 3 ) data to support trend analyses and the development of numerical water-quality criteria. The proposed criteria build on a conceptual model emphasizing the need to distinguish climatic and human effects in gauging progress to reverse eutrophication in estuarine-coastal ecosystems

    Seasonal to Inter-Annual Variability of Primary Production in Chesapeake Bay: Prospects to Reverse Eutrophication and Change Trophic Classification

    Get PDF
    Estuarine-coastal ecosystems are rich areas of the global ocean with elevated rates of organic matter production supporting major fisheries. Net and gross primary production (NPP, GPP) are essential properties of these ecosystems, characterized by high spatial, seasonal, and inter-annual variability associated with climatic effects on hydrology. Over 20 years ago, Nixon defined the trophic classification of marine ecosystems based on annual phytoplankton primary production (APPP), with categories ranging from “oligotrophic” to “hypertrophic”. Source data consisting of shipboard measurements of NPP and GPP from 1982 to 2004 for Chesapeake Bay in the mid-Atlantic region of the United States supported estimates of APPP from 300 to 500 g C m−2 yr−1, corresponding to “eutrophic” to “hypertrophic” categories. Here, we developed generalized additive models (GAM) to interpolate the limited spatio-temporal resolution of source data. Principal goals were: (1) to develop predictive models of NPP and GPP calibrated to source data (1982 to 2004); (2) to apply the models to historical (1960s, 1970s) and monitoring (1985 to 2015) data with adjustments for nutrient loadings and climatic effects; (3) to estimate APPP from model predictions of NPP; (4) to test effects of simulated reductions of phytoplankton biomass or nutrient loadings on trophic classification based on APPP. Simulated 40% decreases of euphotic-layer chl-a or TN and NO2 + NO3 loadings led to decreasing APPP sufficient to change trophic classification from “eutrophic’ to “mesotrophic” for oligohaline (OH) and polyhaline (PH) salinity zones, and from “hypertrophic” to “eutrophic” for the mesohaline (MH) salinity zone of the bay. These findings show that improved water quality is attainable with sustained reversal of nutrient over-enrichment sufficient to decrease phytoplankton biomass and APPP

    Long-Term Trends of Nutrients and Phytoplankton in Chesapeake Bay

    Get PDF
    Climate effects on hydrology impart high variability to water-quality properties, including nutrient loadings, concentrations, and phytoplankton biomass as chlorophyll-a (chl-a), in estuarine and coastal ecosystems. Resolving long-term trends of these properties requires that we distinguish climate effects from secular changes reflecting anthropogenic eutrophication. Here, we test the hypothesis that strong climatic contrasts leading to irregular dry and wet periods contribute significantly to interannual variability of mean annual values of water-quality properties using in situ data for Chesapeake Bay. Climate effects are quantified using annual freshwater discharge from the Susquehanna River together with a synoptic climatology for the Chesapeake Bay region based on predominant sea-level pressure patterns. Time series of water-quality properties are analyzed using historical (1945–1983) and recent (1984–2012) data for the bay adjusted for climate effects on hydrology. Contemporary monitoring by the Chesapeake Bay Program (CBP) provides data for a period since mid-1984 that is significantly impacted by anthropogenic eutrophication, while historical data back to 1945 serve as historical context for a period prior to severe impairments. The generalized additive model (GAM) and the generalized additive mixed model (GAMM) are developed for nutrient loadings and concentrations (total nitrogen—TN, nitrate + nitrate—NO2 + NO3) at the Susquehanna River and water-quality properties in the bay proper, including dissolved nutrients (NO2 + NO3, orthophosphate—PO4), chl-a, diffuse light attenuation coefficient (KD (PAR)), and chl-a/TN. Each statistical model consists of a sum of nonlinear functions to generate flow-adjusted time series and compute long-term trends accounting for climate effects on hydrology. We present results identifying successive periods of (1) eutrophication ca. 1945–1980 characterized by approximately doubled TN and NO2 + NO3 loadings, leading to increased chl-a and associated ecosystem impairments, and (2) modest decreases of TN and NO2 + NO3 loadings from 1981 to 2012, signaling a partial reversal of nutrient over-enrichment. Comparison of our findings with long-term trends of water-quality properties for a variety of estuarine and coastal ecosystems around the world reveals that trends for Chesapeake Bay are weaker than for other systems subject to strenuous management efforts, suggesting that more aggressive actions than those undertaken to date will be required to counter anthropogenic eutrophication of this valuable resource

    Recent increases of rainfall and flooding from tropical cyclones (TCs) in North Carolina (USA): implications for organic matter and nutrient cycling in coastal watersheds

    Get PDF
    Coastal North Carolina experienced 36 tropical cyclones (TCs), including three floods of historical significance in the past two decades (Hurricanes Floyd-1999, Matthew-2016 and Florence-2018). These events caused catastrophic flooding and major alterations of water quality, fisheries habitat and ecological conditions of the Albemarle-Pamlico Sound (APS), the second largest estuarine complex in the United States. Continuous rainfall records for coastal NC since 1898 reveal a period of unprecedented high precipitation storm events since the late-1990s. Six of seven of the “wettest” storm events in this > 120-year record occurred in the past two decades, identifying a period of elevated precipitation and flooding associated with recent TCs. We examined storm-related freshwater discharge, carbon (C) and nutrient, i.e., nitrogen (N) and phosphorus (P) loadings, and evaluated contributions to total annual inputs in the Neuse River Estuary (NRE), a major sub-estuary of the APS. These contributions were highly significant, accounting for > 50% of annual loads depending on antecedent conditions and storm-related flooding. Depending on the magnitude of freshwater discharge, the NRE either acted as a “processor” to partially assimilate and metabolize the loads or acted as a “pipeline” to transport the loads to the APS and coastal Atlantic Ocean. Under base-flow, terrestrial sources dominate riverine carbon. During storm events these carbon sources are enhanced through the inundation and release of carbon from wetlands. These findings show that event-scale discharge plays an important and, at times, predominant role in C, N and P loadings. We appear to have entered a new climatic regime characterized by more frequent extreme precipitation events, with major ramifications for hydrology, cycling of C, N and P, water quality and habitat conditions in estuarine and coastal waters

    Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: implications for biogeochemical cycling and water quality in a stormier world

    Get PDF
    Coastal North Carolina (USA) has experienced 35 tropical cyclones over the past 2 decades; the frequency of these events is expected to continue in the foreseeable future. Individual storms had unique and, at times, significant hydrologic, nutrient-, and carbon (C)-loading impacts on biogeochemical cycling and phytoplankton responses in a large estuarine complex, the Pamlico Sound (PS) and Neuse River Estuary (NRE). Major storms caused up to a doubling of annual nitrogen and tripling of phosphorus loading compared to non-storm years; magnitudes of loading depended on storm tracks, forward speed, and precipitation in NRE-PS watersheds. With regard to C cycling, NRE-PS was a sink for atmospheric CO2 during dry, storm-free years and a significant source of CO2 in years with at least one storm, although responses were storm-specific. Hurricane Irene (2011) mobilized large amounts of previously-accumulated terrigenous C in the watershed, mainly as dissolved organic carbon, and extreme winds rapidly released CO2 to the atmosphere. Historic flooding after Hurricanes Joaquin (2015) and Matthew (2016) provided large inputs of C from the watershed, modifying the annual C balance of NRE-PS and leading to sustained CO2 efflux for months. Storm type affected biogeochemical responses as C-enriched floodwaters enhanced air–water CO2 exchange during ‘wet’ storms, while CO2 fluxes during ‘windy’ storms were largely supported by previously-accumulated C. Nutrient loading and flushing jointly influenced spatio-temporal patterns of phytoplankton biomass and composition. These findings suggest the importance of incorporating freshwater discharge and C dynamics in nutrient management strategies for coastal ecosystems likely to experience a stormier future

    Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    Get PDF
    corecore