1,842 research outputs found
Landau Analog Levels for Dipoles in the Noncommutative Space and Phase Space
In the present contribution we investigate the Landau analog energy
quantization for neutral particles, that possesses a nonzero permanent magnetic
and electric dipole moments, in the presence of an homogeneous electric and
magnetic external fields in the context of the noncommutative quantum
mechanics. Also, we analyze the Landau--Aharonov--Casher and
Landau--He--McKellar--Wilkens quantization due to noncommutative quantum
dynamics of magnetic and electric dipoles in the presence of an external
electric and magnetic fields and the energy spectrum and the eigenfunctions are
obtained. Furthermore, we have analyzed Landau quantization analogs in the
noncommutative phase space, and we obtain also the energy spectrum and the
eigenfunctions in this context.Comment: 20 pages, references adde
Termination of the Phase of Quintessence by Gravitational Back-Reaction
We study the effects of gravitational back-reaction in models of
Quintessence. The effective energy-momentum tensor with which cosmological
fluctuations back-react on the background metric will in some cases lead to a
termination of the phase of acceleration. The fluctuations we make use of are
the perturbations in our present Universe. Their amplitude is normalized by
recent measurements of anisotropies in the cosmic microwave background, their
slope is taken to be either scale-invariant, or characterized by a slightly
blue tilt. In the latter case, we find that the back-reaction effect of
fluctuations whose present wavelength is smaller than the Hubble radius but
which are stretched beyond the Hubble radius by the accelerated expansion
during the era of Quintessence domination can become large. Since the
back-reaction effects of these modes oppose the acceleration, back-reaction
will lead to a truncation of the period of Quintessence domination. This result
impacts on the recent discussions of the potential incompatibility between
string theory and Quintessence.Comment: 7 pages a few clarifying comments adde
Charge Form Factor and Cluster Structure of Li Nucleus
The charge form factor of Li nucleus is considered on the basis of its
cluster structure. The charge density of Li is presented as a
superposition of two terms. One of them is a folded density and the second one
is a sum of He and the deuteron densities. Using the available
experimental data for He and deuteron charge form factors, a good
agreement of the calculations within the suggested scheme is obtained with the
experimental data for the charge form factor of Li, including those in
the region of large transferred momenta.Comment: 12 pages 5 figure
Hybrid fiber reinforcement and crack formation in cementitious composite materials
The use of different types of fibers simultaneously for reinforcing cementitious
matrices is motivated by the concept of a multi-scale nature of the
crack propagation process. Fibers with different geometrical and mechanical properties
are used to bridge cracks of different sizes from the micro- to the macroscale.
In this study, the performance of different fiber reinforced cementitious
composites is assessed in terms of their tensile stress-crack opening behavior. The
results obtained from this investigation allow a direct quantitative comparison of
the behavior obtained from the different fiber reinforcement systems. The research
described in this paper shows that the multi-scale conception of cracking and the
use of hybrid fiber reinforcements do not necessarily result in an improved tensile
behavior of the composite. Particular material design requirements may nevertheless
justify the use of hybrid fiber reinforcements.Fundação para a Ciência e a Tecnologia (FCT) - SFRH / BD / 36515 / 200
Thermal and hydrolytic degradation of electrospun fish gelatin membranes
The thermal and hydrolytic degradation of electrospun gelatin membranes cross-linked with glutaraldehyde in vapor phase has been studied. In vitro degradation of gelatin membranes was evaluated in phosphate buffer saline solution at 37 °C. After 15 days under these conditions, a weight loss of 68% was observed, attributed to solvation and depolymerization of the main polymeric chains. Thermal degradation kinetics of the gelatin raw material and as-spun electrospun membranes showed that the electrospinning processing conditions do not influence polymer degradation. However, for cross-linked samples a decrease in the activation energy was observed, associated with the effect of glutaraldehyde cross-linking reaction in the inter- and intra-molecular hydrogen bonds of the protein. It is also shown that the electrospinning process does not affect the formation of the helical structure of gelatin chainsThis work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2011 and by projects project references NANO/NMed-SD/0156/2007 and PTDC/CTM-NAN/112574/2009. The authors also thank support from the COST Action MP1003, 2010 'European Scientific Network for Artificial Muscles'. DMC, JP and VS would like to acknowledge the FCT for the SFRH/BD/82411/2011, SFRH/BD/64901/2009 and SFRH/BPD/64958/2009 grants respectively
Whole exome sequence analysis reveals a homozygous mutation in PNPLA2 as the cause of severe dilated cardiomyopathy secondary to neutral lipid storage disease.
Accepted manuscript 12 month embargo, pre-print immediately
Weak Localization Effect in Superconductors by Radiation Damage
Large reductions of the superconducting transition temperature and
the accompanying loss of the thermal electrical resistivity (electron-phonon
interaction) due to radiation damage have been observed for several A15
compounds, Chevrel phase and Ternary superconductors, and in
the high fluence regime. We examine these behaviors based on the recent theory
of weak localization effect in superconductors. We find a good fitting to the
experimental data. In particular, weak localization correction to the
phonon-mediated interaction is derived from the density correlation function.
It is shown that weak localization has a strong influence on both the
phonon-mediated interaction and the electron-phonon interaction, which leads to
the universal correlation of and resistance ratio.Comment: 16 pages plus 3 figures, revtex, 76 references, For more information,
Plesse see http://www.fen.bilkent.edu.tr/~yjki
Recent developments in planet migration theory
Planetary migration is the process by which a forming planet undergoes a
drift of its semi-major axis caused by the tidal interaction with its parent
protoplanetary disc. One of the key quantities to assess the migration of
embedded planets is the tidal torque between the disc and planet, which has two
components: the Lindblad torque and the corotation torque. We review the latest
results on both torque components for planets on circular orbits, with a
special emphasis on the various processes that give rise to additional, large
components of the corotation torque, and those contributing to the saturation
of this torque. These additional components of the corotation torque could help
address the shortcomings that have recently been exposed by models of planet
population syntheses. We also review recent results concerning the migration of
giant planets that carve gaps in the disc (type II migration) and the migration
of sub-giant planets that open partial gaps in massive discs (type III
migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal
effects in Astronomy and Astrophysics", Lecture Notes in Physic
Dynamics of Tachyon and Phantom Field beyond the Inverse Square Potentials
We investigate the cosmological evolution of the tachyon and phantom-tachyon
scalar field by considering the potential parameter () as a function of another potential parameter
(), which correspondingly extends the
analysis of the evolution of our universe from two-dimensional autonomous
dynamical system to the three-dimension. It allows us to investigate the more
general situation where the potential is not restricted to inverse square
potential and .One result is that, apart from the inverse square potential,
there are a large number of potentials which can give the scaling and dominant
solution when the function equals for one or some
values of as well as the parameter satisfies
condition Eq.(18) or Eq.(19). We also find that for a class of different
potentials the dynamics evolution of the universe are actually the same and
therefore undistinguishable.Comment: 8 pages, no figure, accepted by The European Physical Journal
C(2010), online first,
http://www.springerlink.com/content/323417h708gun5g8/?p=dd373adf23b84743b523a3fa249d51c7&pi=
On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode
A major, albeit serendipitous, discovery of the SOlar and Heliospheric
Observatory mission was the observation by the Extreme Ultraviolet Telescope
(EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating
over a significant fraction of the Sun's surface. These so-called EIT or EUV
waves are associated with eruptive phenomena and have been studied intensely.
However, their wave nature has been challenged by non-wave (or pseudo-wave)
interpretations and the subject remains under debate. A string of recent solar
missions has provided a wealth of detailed EUV observations of these waves
bringing us closer to resolving their nature. With this review, we gather the
current state-of-art knowledge in the field and synthesize it into a picture of
an EUV wave driven by the lateral expansion of the CME. This picture can
account for both wave and pseudo-wave interpretations of the observations, thus
resolving the controversy over the nature of EUV waves to a large degree but
not completely. We close with a discussion of several remaining open questions
in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for
publicatio
- …
