10 research outputs found

    Space-time Phase Transitions in Driven Kinetically Constrained Lattice Models

    Full text link
    Kinetically constrained models (KCMs) have been used to study and understand the origin of glassy dynamics. Despite having trivial thermodynamic properties, their dynamics slows down dramatically at low temperatures while displaying dynamical heterogeneity as seen in glass forming supercooled liquids. This dynamics has its origin in an ergodic-nonergodic first-order phase transition between phases of distinct dynamical "activity". This is a "space-time" transition as it corresponds to a singular change in ensembles of trajectories of the dynamics rather than ensembles of configurations. Here we extend these ideas to driven glassy systems by considering KCMs driven into non-equilibrium steady states through non-conservative forces. By classifying trajectories through their entropy production we prove that driven KCMs also display an analogous first-order space-time transition between dynamical phases of finite and vanishing entropy production. We also discuss how trajectories with rare values of entropy production can be realized as typical trajectories of a mapped system with modified forces

    Simulating rare events in dynamical processes

    Full text link
    Atypical, rare trajectories of dynamical systems are important: they are often the paths for chemical reactions, the haven of (relative) stability of planetary systems, the rogue waves that are detected in oil platforms, the structures that are responsible for intermittency in a turbulent liquid, the active regions that allow a supercooled liquid to flow... Simulating them in an efficient, accelerated way, is in fact quite simple. In this paper we review a computational technique to study such rare events in both stochastic and Hamiltonian systems. The method is based on the evolution of a family of copies of the system which are replicated or killed in such a way as to favor the realization of the atypical trajectories. We illustrate this with various examples

    Evidence of a two-state picture for supercooled water and its connections with glassy dynamics

    Get PDF
    The picture of liquid water as consisting of a mixture of molecules of two different structural states (structured, low-density molecules and unstructured, high-density ones) represents a belief that has been around for long time awaiting for a conclusive validation. While in the last years some indicators have indeed provided certain evidence for the existence of structurally different ``species´´, a more definite bimodality in the distribution function of a sound structural quantity would be desired. In this context, our present work combines the use of a structural parameter with a minimization technique to yield neat bimodal distributions in a temperature range within the supercooled liquid regime, thus clearly revealing the presence of two populations of differently structured water molecules. Furthermore, we elucidate the role of the inter-conversion between the identified two kinds of states for the dynamics of structural relaxation, thus linking structural information to dynamics, a longstanding issue in glass physics.Fil: Appignanesi, Gustavo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Rodriguez Fris, Jorge Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Sciortino, Francesco. Università di Roma; Itali

    Nitrogen Cycles: Past, Present, and Future

    No full text

    Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization

    No full text
    corecore