26 research outputs found

    Comparing grazing by Dreissena polymorpha on phytoplankton in the presence of toxic and non-toxic cyanobacteria

    No full text
    The feeding behaviour of the zebra mussel (Dreissena polymorpha) was studied in the laboratory on different combinations of food, including a green alga Chlamydomonas reinhardtii) and toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa. 2. The highest clearance rate of phytoplankton by zebra mussels was found when the mussels were feeding on a mixture of Chlamydomonas and non-toxic Microcystis, the lowest on a mixture of Chlamydomonas and toxic Microcystis. 3. The differences found in the clearance rates between food combinations can be partly explained by the production of pseudofaeces containing live phytoplankton cells. Zebra mussels expelled significantly more live phytoplankton cells in the presence of toxic Microcystis than in the presence of non-toxic Microcystis. The pseudofaeces contained predominantly live Chlamydomonas cells. Proportionately much less live Microcystis cells were encountered in the pseudofaeces. 4. Consequently, grazing of zebra mussels on a combination of Chlamydomonas and Microcystis may finally result in a dominance of Chlamydomonas over Microcystis. The presence of toxic Microcystis may even strengthen this shift.

    Zebra mussels as a potential tool in the restoration of eutrophic shallow lakes, dominated by toxic cyanobacteria

    No full text
    Contains fulltext : 75527.pdf (publisher's version ) (Closed access

    Influence of toxic and non-toxic phytoplankton on feeding and survival of Dreissena polymorpha (Pallas) larvae

    No full text
    Grazing and survival of larvae of the zebra mussel, Dreissena polymorpha, on a green alga and cyanobacteria were studied in laboratory experiments. Clearance rates of the larvae were determined for Chlamydomonas reinhardtii (green alga), two non-toxic and two toxic Microcystis aeruginosa strains (Cyanobacteria). Clearance rates of larvae on non-toxic Microcystis were significantly higher than on toxic Microcystis. The clearance rate on Chlamydomonas reinhardtii was in between the clearance rates on toxic and non-toxic Microcystis strains and not significantly different from them. Effects of toxicity of Microcystis on the survival of zebra mussel larvae was investigated in a short-term experiment. Survival of larvae fed toxic Microcystis was lower than that of larvae fed non-toxic Microcystis, but higher than that of starved larvae. This may imply that, for survival of zebra mussel larvae, it is better to have bad quality (toxic) food than no food [KEYWORDS: zebra mussel, phytoplankton, toxic cyanobacteria, survival, grazing, Microcystis

    Potential synergistic effects of microcystins and bacterial lipopolysaccharides on life history traits of Daphnia galeata raised on low and high food levels

    No full text
    Metastudies have found no consistent effects of the cyanobacterial toxin microcystin on Daphnia, and there are discrepancies between field observations and experiments. Confounding factors include absence or presence of alternative high quality food or the presence of bioactive compounds, other than microcystins in cyanobacteria. Of specific interest are lipopolysaccharides (LPS) on the outer cell wall. LPS may have a number of biological effects, including reduced detoxication of microcystins in plants and animals. When grazing seston in the field, filterfeeders take up heterotrophic bacteria attached to cyanobacteria, as well as free-living bacteria. The LPS produced by heterotrophic bacteria have been shown to be much more harmful than cyanobacterial LPS. We performed two experiments in which we tested for potential synergistic effects between bacterial LPS and microcystins. Full-factorial experiments separated the main effects and interactions between (i) food quantity as well as food quality (addition of the green alga Scenedesmus), (ii) presence or absence of strains that vary in amount and composition of microcystins (microcystin free strain NIVA-CYA43, moderate microcystin producing strain NIVA-CYA140 and high microcystin producing strain PCC7820), and (iii) presence or absence of bacterial LPS on different life history traits of Daphnia galeata. We measured juvenile growth rate, age and size at first reproduction, death before first reproduction and standard carbon content of Daphnia. From the experiments we conclude that microcystin-producing Microcystis had deleterious effects on the life history of D. galeata, but especially when the availability of high quality green algal food was limited in comparison to the supply of microcystin producing strain PCC7820. In the experiment in which PCC7820 was used as microcystin-producing strain, addition of LPS lowered SCC of Daphnia, but had no effects on other life history parameters. The interaction between Microcystis strain, Microcystis concentration and LPS was highly significant in case of PCC7820, but not in case of CYA-140, indicating that the effects of LPS and its interactions with microcystin on Daphnia life history were strongly context dependent.

    Low oxygen tolerance of different life stages of temperate freshwater fish species

    No full text
    Contains fulltext : 117083.pdf (publisher's version ) (Closed access
    corecore