2,920 research outputs found
Hadronic Charmed Meson Decays Involving Tensor Mesons
Charmed meson decays into a pseudoscalar meson P and a tensor meson T are
studied. The charm to tensor meson transition form factors are evaluated in the
Isgur-Scora-Grinstein-Wise (ISGW) quark model. It is shown that the
Cabibbo-allowed decay is dominated by the
W-annihilation contribution and has the largest branching ratio in
decays. We argue that the Cabibbo-suppressed mode
should be suppressed by one order of magnitude relative to . When the finite width effect of the tensor resonances is taken
into account, the decay rate of is generally enhanced by a factor of
. Except for , the predicted branching ratios
of decays are in general too small by one to two orders of magnitude
compared to experiment. However, it is very unlikely that the
transition form factors can be enhanced by a factor of within the
ISGW quark model to account for the discrepancy between theory and experiment.
As many of the current data are still preliminary and lack sufficient statistic
significance, more accurate measurements are needed to pin down the issue.Comment: 11 page
Temperature dependence of current self-oscillations and electric field domains in sequential tunneling doped superlattices
We examine how the current--voltage characteristics of a doped weakly coupled
superlattice depends on temperature. The drift velocity of a discrete drift
model of sequential tunneling in a doped GaAs/AlAs superlattice is calculated
as a function of temperature. Numerical simulations and theoretical arguments
show that increasing temperature favors the appearance of current
self-oscillations at the expense of static electric field domain formation. Our
findings agree with available experimental evidence.Comment: 7 pages, 5 figure
A Graph Theoretic Approach for Object Shape Representation in Compositional Hierarchies Using a Hybrid Generative-Descriptive Model
A graph theoretic approach is proposed for object shape representation in a
hierarchical compositional architecture called Compositional Hierarchy of Parts
(CHOP). In the proposed approach, vocabulary learning is performed using a
hybrid generative-descriptive model. First, statistical relationships between
parts are learned using a Minimum Conditional Entropy Clustering algorithm.
Then, selection of descriptive parts is defined as a frequent subgraph
discovery problem, and solved using a Minimum Description Length (MDL)
principle. Finally, part compositions are constructed by compressing the
internal data representation with discovered substructures. Shape
representation and computational complexity properties of the proposed approach
and algorithms are examined using six benchmark two-dimensional shape image
datasets. Experiments show that CHOP can employ part shareability and indexing
mechanisms for fast inference of part compositions using learned shape
vocabularies. Additionally, CHOP provides better shape retrieval performance
than the state-of-the-art shape retrieval methods.Comment: Paper : 17 pages. 13th European Conference on Computer Vision (ECCV
2014), Zurich, Switzerland, September 6-12, 2014, Proceedings, Part III, pp
566-581. Supplementary material can be downloaded from
http://link.springer.com/content/esm/chp:10.1007/978-3-319-10578-9_37/file/MediaObjects/978-3-319-10578-9_37_MOESM1_ESM.pd
Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes
A wide field of view Cherenkov/fluorescence telescope array is one of the
main components of the Large High Altitude Air Shower Observatory project. To
serve as Cherenkov and fluorescence detectors, a flexible and mobile design is
adopted for easy reconfiguring of the telescope array. Two prototype telescopes
have been constructed and successfully run at the site of the ARGO-YBJ
experiment in Tibet. The features and performance of the telescopes are
presented
Varied Signature Splitting Phenomena in Odd Proton Nuclei
Varied signature splitting phenomena in odd proton rare earth nuclei are
investigated. Signature splitting as functions of and in the angular
momentum projection theory is explicitly shown and compared with those of the
particle rotor model. The observed deviations from these rules are due to the
band mixings. The recently measured Ta high spin data are taken as a
typical example where fruitful information about signature effects can be
extracted. Six bands, two of which have not yet been observed, were calculated
and discussed in detail in this paper. The experimentally unknown band head
energies are given
The Z-Z' Mass Hierarchy in a Supersymmetric Model with a Secluded U(1)'-Breaking Sector
We consider the Z'/Z mass hierarchy in a supersymmetric model in which the
U(1)' is broken in a secluded sector coupled to the ordinary sector only by
gauge and possibly soft terms. A large mass hierarchy can be achieved while
maintaining the normal sparticle spectra if there is a direction in which the
tree level potential becomes flat when a particular Yukawa coupling vanishes.
We describe the conditions needed for the desired breaking pattern, to avoid
unwanted global symmetries, and for an acceptable effective mu parameter. The
electroweak breaking is dominated by A terms rather than scalar masses, leading
to tan beta ~ 1. The spectrum of the symmetry breaking sector is displayed.
There is significant mixing between the MSSM particles and new standard model
singlets, for both the Higgs scalars and the neutralinos. A larger Yukawa
coupling for the effective mu parameter is allowed than in the NMSSM because of
the U(1)' contribution to the running from a high scale. The upper bound on the
tree-level mass of the lightest CP even Higgs doublet mass is about c x 174
GeV, where c is of order unity, but the actual mass eigenvalues are generally
smaller because of singlet mixing.Comment: Latex, 12 Tables, 22 page
Emergence of Skyrme crystal in Gross-Neveu and 't Hooft models at finite density
We study two-dimensional, large field theoretic models (Gross-Neveu
model, 't Hooft model) at finite baryon density near the chiral limit. The same
mechanism which leads to massless baryons in these models induces a breakdown
of translational invariance at any finite density. In the chiral limit baryonic
matter is characterized by a spatially varying chiral angle with a wave number
depending only on the density. For small bare quark masses a sine-Gordon kink
chain is obtained which may be regarded as simplest realization of the Skyrme
crystal for nuclear matter. Characteristic differences between confining and
non-confining models are pointed out.Comment: 27 pages, 11 figures, added reference, corrected sig
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?
In this paper we put forward a running coupling scenario for describing the
interaction between dark energy and dark matter. The dark sector interaction in
our scenario is free of the assumption that the interaction term is
proportional to the Hubble expansion rate and the energy densities of dark
sectors. We only use a time-variable coupling (with the scale factor
of the universe) to characterize the interaction . We propose a
parametrization form for the running coupling in which the
early-time coupling is given by a constant , while today the coupling is
given by another constant, . For investigating the feature of the running
coupling, we employ three dark energy models, namely, the cosmological constant
model (), the constant model (), and the time-dependent
model (). We constrain the models with the current
observational data, including the type Ia supernova, the baryon acoustic
oscillation, the cosmic microwave background, the Hubble expansion rate, and
the X-ray gas mass fraction data. The fitting results indicate that a
time-varying vacuum scenario is favored, in which the coupling crosses
the noninteracting line () during the cosmological evolution and the sign
changes from negative to positive. The crossing of the noninteracting line
happens at around , and the crossing behavior is favored at about
1 confidence level. Our work implies that we should pay more attention
to the time-varying vacuum model and seriously consider the phenomenological
construction of a sign-changeable or oscillatory interaction between dark
sectors.Comment: 8 pages, 5 figures; refs added; to appear in EPJ
The Distinguishability of Interacting Dark Energy from Modified Gravity
We study the observational viability of coupled quintessence models with
their expansion and growth histories matched to modified gravity cosmologies.
We find that for a Dvali-Gabadadze-Porrati model which has been fitted to
observations, the matched interacting dark energy models are observationally
disfavoured. We also study the distinguishability of interacting dark energy
models matched to scalar-tensor theory cosmologies and show that it is not
always possible to find a physical interacting dark energy model which shares
their expansion and growth histories.Comment: 8 pages, 5 figure
- …
