672 research outputs found

    Reflecting on the first three years of Topex/Poseidon

    Get PDF
    satellite, in orbit since August 1992, is the first global ocean observing system specifically de-signed to study ocean dynamics. The satellite uses a state-of-the-art radar altimeter system to determine the sea level-the height of sea sur-face relative to a reference ellipsoid-with an unprecedented accuracy. It is supplying a wealth of new information on ocean circula-tion and the patterns of the global seasonal cy-cle, low-frequency wave dynamics, gyre-scale variabilities, ocean tides, and global mean sea level variations. These observations are being used to test ocean circulation theories and the ever-maturing computer models of ocean gen-eral circulation. T/P observations cover the global oceans from 66"s to 66"N every 10 days, allowing oceanographers to routinely monitor the dy-namic global ocean. For the first time, the ocean is being accurately sampled with suffi-cient spatial and temporal resolution to ad-dress its variability at frequencies and wavenumbers (spatial frequency) previously unattainable by in situ observations. The mis-sion was also designed to measure ocean tides, resulting in the most accurate deep ocean tide models to date. The tidal signals were then removed from the sea level measure-ments to make the data suitable for ocean cir-culation studies. The radar altimeter also measures wind speed and wave height, which are part of the mission's data product in addi-tion to sea level. Many results from the mission have been published in two special issues o

    Broadband NIR-emitting Te cluster-doped glass for smart light source towards night-vision and NIR spectroscopy applications

    Get PDF
    Broadband near-infrared (NIR)-emitting materials are crucial components of the next generation of smart NIR light sources based on blue light-emitting diodes (LEDs). Here, we report a Te cluster-doped borate glass, which exhibits ultra-broadband emission around 980 nm with a full-width at half-maximum (FWHM) of 306 nm under blue light excitation. We propose adjustments of glass chemistry and processing condition as a means for topo-chemical tailoring of the NIR photoemission characteristics in such materials. Through implementing strongly reducing conditions during glass melting, Te clusters with broad NIR photoluminescence can be generated and stabilized once the melt is vitrified to the glassy state. Tunability of the NIR emission peak over the wavelength range of 904 to 1026 nm is possible in this way, allowing for fine adjustments of spectral properties relative to the stretching vibrations of common chemical bonds, for example, in water, proteins, and fats. This potentially enables high sensitivity in NIR spectroscopy. We further demonstrate potential application of glass-converted LEDs in night vision.</p

    High-level expression of Trigonopsis variabilis D-amino acid oxidase in Escherichia coli using lactose as inducer

    Get PDF
    The use of lactose as inducer for the expression of Trigonopsis variabilis D-amino acid oxidase gene (daao) was investigated in Escherichia coli regulated by T7 or T5 promoter. The daao gene was prepared by reverse transcriptase-polymerase chain reaction and cloned into pET21b and pQE-30 to yield pET-DAAO and pQE-DAAO, respectively. The His(6)-tagged DAAO was expressed in E. coli and had a M-r value of approximately 39.3 kDa. In lactose-induced E. coli BL21 (DE3) (pET-DAAO), the expressed DAAO could comprise up to 15% of total soluble proteins and a productivity of 23.4 U ml(-1) was obtained

    Carbonaceous nanomaterial reinforced Ti-6Al-4V matrix composites: Properties, interfacial structures and strengthening mechanisms

    Get PDF
    For conventional titanium matrix composites (TiMCs), there is always a trade-off issue between enhanced strength and ductility of these materials. In this study, we explore a new design methodology by reinforcing titanium alloy matrix with carbonaceous nanomaterials and investigate the mechanisms for achieving a good balance of their strength and ductility. The TiMCs were synthesized through a low-cost powder metallurgy route using pre-mixed Ti-6Al-4V (TC4) powders and various carbon based nanofillers, including graphite powders (GPs), graphene oxide nanosheets (GONs) and graphene nanoplates (GNPs), and were further rolled at a temperature of 1173 K with a deformation of 66.7%. Among these three types of carbon reinforcing sources, the GNPs are more easily reacted with TC4 matrix and form more contents of TiC phases after sintering owing to their larger amounts of defects than those of the GPs and GONs. TiC products are identified to play a bridging role for not only connecting the TC4 matrix but also forming coherent interfaces with the TC4 matrix, thus facilitating a strong interfacial bonding of the composites. The as-rolled GNPs/TC4 composites exhibit a 0.2% yield strength of 1146.36 MPa (with an elongation of ∌8.1%), which is 24.6%, 9.22% and 5.62% higher than those of pure TC4, GPs/TC4 and GONs/TC4 composites. The GNPs/TC4 nanocomposites show a better balance of strength and ductility than those of the other two types of nanocomposites. The synergetic strengthening mechanisms are identified to be Orowan strengthening effect, effective load transfer capability of GNPs, and in-situ formation of interfacial TiC structures, which provide optimum interfacial microstructures to achieve good mechanical properties of the TiMCs

    Interface engineering of graphene/copper matrix composites decorated with tungsten carbide for enhanced physico-mechanical properties

    Get PDF
    For metal matrix composites (MMCs), introduction of low-dimensional nano-carbon materials (NCMs) into three dimensional metallic matrix is commonly applied to enhance mechanical and physical properties of metals and thus significantly extend their wide range applications. However, the interfaces between the NCMs and metal matrix are always a major issue for achieving the best enhancement effects. In this paper, we investigated interfacial structures of graphene nanoplates (GNPs) reinforced Cu matrix composites fabricated using a simple and industrially scalable strategy, through integration of interface engineering design methodology and a spark plasma sintering (SPS) process. We then systematically evaluated their physico-mechanical properties, interfacial characteristics and strengthening mechanisms. The in-situ formed WxCy nano-layers and carbide nanoparticles on the surfaces of GNPs and near the interfaces of Cu grains promote strong interfacial bonding and improves the cohesive strength of Cu based nanocomposites. The GNPs-W/Cu composites show a good balance between strength and electrical conductivity. Their 0.2% yield strength and ultimate tensile strength have been improved up to 239.13% (112.73%) and 197.76% (72.51%), respectively, when compared with those of pure copper (or GNPs/Cu composites). Electrical conductivity of GNPs-W/Cu composites shows no apparent changes after the addition of the GNPs. The dislocation strengthening, refinement strengthening and load transfer strengthening were achieved simultaneously through the engineered interfaces in GNPs-W/Cu matrix composites. This work has provided a new strategy to fabricate high-performance NCMs enhanced MMCs by using the interface engineering methodology

    B→η(ηâ€Č)K(π)B \to \eta(\eta') K(\pi) in the Standard Model with Flavor Symmetry

    Full text link
    The observed branching ratios for B→Kηâ€ČB\to K \eta' decays are much larger than factorization predictions in the Standard Model (SM). Many proposals have been made to reconcile the data and theoretical predictions. In this paper we study these decays within the SM using flavor U(3) symmetry. If small annihilation amplitudes are neglected, one needs 11 hadronic parameters to describe B→PPB\to PP decays where PP can be one of the π\pi, KK, η\eta and ηâ€Č\eta' nonet mesons. We find that existing data are consistent with SM with flavor U(3) symmetry. We also predict several measurable branching ratios and CP asymmetries for B→K(π)η(ηâ€Č)B \to K (\pi) \eta(\eta'), η(ηâ€Č)η(ηâ€Č)\eta(\eta')\eta(\eta') decays. Near future experiments can provide important tests for the Standard Model with flavor U(3) symmetry.Comment: 13 pages, 4 table

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    Measurements of the observed cross sections for e+e−→e^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb−1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+e−→π+π−π0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+K−π0π0K^+K^-\pi^0\pi^0, 2(π+π−π0)2(\pi^+\pi^-\pi^0), K+K−π+π−π0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π−)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/Ïˆâ†’ÎłÏ•Ï•â†’ÎłK+K−KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0−+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.24−0.02+0.03−0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.03−0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/Ïˆâ†’ÎłÎ·(2225))⋅Br(η(2225)→ϕϕ)=(4.4±0.4±0.8)×10−4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb−1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0→Ό+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+→Ό+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+→Ό+X)BF(D0→Ό+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25
    • 

    corecore