1,180 research outputs found
âI don't think I can catch itâ: women, confidence and responsibility in football coach education
Whilst womenâs participation in sport continues to increase, their presence remains ideologically challenging given the significance of sport for the construction of gendered identities. As a hegmonically masculine institution, leadership roles across sport remain male-dominated and the entry of women into positions of authority (such as coaching) routinely contested. But in powerful male-typed sports, like football, womenâs participation remains particularly challenging. Consequently, constructions of gender inequity in coaching were explored at a regional division of the English Football Association through unstructured interviews and coaching course observation. Using critical discourse
analysis we identified the consistent re/production of women as unconfident in their own skills and abilities, and the framing of women themselves as responsible for the gendered inequities in football coaching. Women were thereby
strategically positioned as deservedly on the periphery of the football category,whilst the organization was positioned as progressive and liberal
Professionalism and the Millbank Tendency: The Political Sociology of New Labour's employees
This article analyses party employees, one of the most under-researched subjects in the study of British political parties. We draw on a blend of quantitative and qualitative data in order to shed light on the social and political profiles of Labour Party staff, and on the question of their professionalisation. The latter theme is developed through a model derived from the sociology of professions. While a relatively limited proportion of party employees conform to the pure ideal-type of professionalism, a considerably greater number manifest enough of the core characteristics of specialisation, commitment, mobility, autonomy and self-regulation to be reasonably described as 'professionals in pursuit of political outcomes'
Self-Diffusion in Random-Tiling Quasicrystals
The first explicit realization of the conjecture that phason dynamics leads
to self-diffusion in quasicrystals is presented for the icosahedral Ammann
tilings. On short time scales, the transport is found to be subdiffusive with
the exponent , while on long time scales it is consistent
with normal diffusion that is up to an order of magnitude larger than in the
typical room temperature vacancy-assisted self-diffusion. No simple finite-size
scaling is found, suggesting anomalous corrections to normal diffusion, or
existence of at least two independent length scales.Comment: 11 pages + 2 figures, COMPRESSED postscript figures available by
anonymous ftp to black_hole.physics.ubc.ca directory outgoing/diffuse (use bi
for binary mode to transfer), REVTeX 3.0, CTP-TAMU 21/9
Decoherence of electron spin qubits in Si-based quantum computers
Direct phonon spin-lattice relaxation of an electron qubit bound by a donor
impurity or quantum dot in SiGe heterostructures is investigated. The aim is to
evaluate the importance of decoherence from this mechanism in several important
solid-state quantum computer designs operating at low temperatures. We
calculate the relaxation rate as a function of [100] uniaxial strain,
temperature, magnetic field, and silicon/germanium content for Si:P bound
electrons. The quantum dot potential is much smoother, leading to smaller
splittings of the valley degeneracies. We have estimated these splittings in
order to obtain upper bounds for the relaxation rate. In general, we find that
the relaxation rate is strongly decreased by uniaxial compressive strain in a
SiGe-Si-SiGe quantum well, making this strain an important positive design
feature. Ge in high concentrations (particularly over 85%) increases the rate,
making Si-rich materials preferable. We conclude that SiGe bound electron
qubits must meet certain conditions to minimize decoherence but that
spin-phonon relaxation does not rule out the solid-state implementation of
error-tolerant quantum computing.Comment: 8 figures. To appear in PRB-July 2002. Revisions include: some
references added/corrected, several typos fixed, a few things clarified.
Nothing dramati
Population Monte Carlo algorithms
We give a cross-disciplinary survey on ``population'' Monte Carlo algorithms.
In these algorithms, a set of ``walkers'' or ``particles'' is used as a
representation of a high-dimensional vector. The computation is carried out by
a random walk and split/deletion of these objects. The algorithms are developed
in various fields in physics and statistical sciences and called by lots of
different terms -- ``quantum Monte Carlo'', ``transfer-matrix Monte Carlo'',
``Monte Carlo filter (particle filter)'',``sequential Monte Carlo'' and
``PERM'' etc. Here we discuss them in a coherent framework. We also touch on
related algorithms -- genetic algorithms and annealed importance sampling.Comment: Title is changed (Population-based Monte Carlo -> Population Monte
Carlo). A number of small but important corrections and additions. References
are also added. Original Version is read at 2000 Workshop on
Information-Based Induction Sciences (July 17-18, 2000, Syuzenji, Shizuoka,
Japan). No figure
Using stereochemistry to control mechanical properties in thiolâyne click-hydrogels
The stereochemistry of polymers has a profound impact on their mechanical properties. While this has been observed in thermoplastics, studies on how stereochemistry affects the bulk properties of swollen networks, such as hydrogels, are limited. Typically, changing the stiffness of a hydrogel is achieved at the cost of changing another parameter, that in turn affects the physical properties of the material and ultimately influences the cellular response. Herein, we report that by manipulating the stereochemistry of a double bond, formed in situ during gelation, materials with diverse mechanical properties but comparable physical properties can be obtained. Click-hydrogels that possess a high % trans content are stiffer than their high % cis analogues by almost a factor of 3. Human mesenchymal stem cells acted as a substrate stiffness cell reporter demonstrating the potential of these platforms to study mechanotransduction without the influence of other external factors
Dicyclic Horizontal Symmetry and Supersymmetric Grand Unification
It is shown how to use as horizontal symmetry the dicyclic group in a supersymmetric unification where
one acts on the first and second families, in a horizontal doublet, and
the other acts on the third. This can lead to acceptable quark masses and
mixings, with an economic choice of matter supermultiplets, and charged lepton
masses can be accommodated.Comment: 10 pages, LaTe
Twenty five years after KLS: A celebration of non-equilibrium statistical mechanics
When Lenz proposed a simple model for phase transitions in magnetism, he
couldn't have imagined that the "Ising model" was to become a jewel in field of
equilibrium statistical mechanics. Its role spans the spectrum, from a good
pedagogical example to a universality class in critical phenomena. A quarter
century ago, Katz, Lebowitz and Spohn found a similar treasure. By introducing
a seemingly trivial modification to the Ising lattice gas, they took it into
the vast realms of non-equilibrium statistical mechanics. An abundant variety
of unexpected behavior emerged and caught many of us by surprise. We present a
brief review of some of the new insights garnered and some of the outstanding
puzzles, as well as speculate on the model's role in the future of
non-equilibrium statistical physics.Comment: 3 figures. Proceedings of 100th Statistical Mechanics Meeting,
Rutgers, NJ (December, 2008
Rare Charm Decays in the Standard Model and Beyond
We perform a comprehensive study of a number of rare charm decays,
incorporating the first evaluation of the QCD corrections to the short distance
contributions, as well as examining the long range effects. For processes
mediated by the transitions, we show that sensitivity to
short distance physics exists in kinematic regions away from the vector meson
resonances that dominate the total rate. In particular, we find that
and are sensitive to non-universal
soft-breaking effects in the Minimal Supersymmetric Standard Model with
R-parity conservation. We separately study the sensitivity of these modes to
R-parity violating effects and derive new bounds on R-parity violating
couplings. We also obtain predictions for these decays within extensions of the
Standard Model, including extensions of the Higgs, gauge and fermion sectors,
as well as models of dynamical electroweak symmetry breaking.Comment: 45 pages, typos fixed, discussions adde
- âŚ