25 research outputs found

    Perspectives in immunotherapy: meeting report from the Immunotherapy Bridge (29-30 November, 2017, Naples, Italy)

    Get PDF
    Immunotherapy represents the third important wave in the history of the systemic treatment of cancer after chemotherapy and targeted therapy and is now established as a potent and effective treatment option across several cancer types. The clinical success of anti-cytotoxic T-lymphocyte-associated antigen (CTLA)-4, first, and anti-programmed death (PD)-1/PD-ligand (L)1 agents in melanoma and other cancers a few years later, has encouraged increasing focus on the development of other immunotherapies (e.g. monoclonal antibodies with other immune targets, adoptive cell transfer, and vaccines), with over 3000 immuno-oncology trials ongoing, involving hundreds of research institutes across the globe. The potential use of these different immunotherapeutic options in various combinations with one another and with other treatment modalities is an area of particular promise. The third Immunotherapy Bridge meeting (29-30 November, 2017, Naples, Italy) focused on recent advances in immunotherapy across various cancer types and is summarised in this report

    Defining the Critical Hurdles in Cancer Immunotherapy

    Get PDF
    ABSTRACT: Scientific discoveries that provide strong evidence of antitumor effects in preclinical models often encounter significant delays before being tested in patients with cancer. While some of these delays have a scientific basis, others do not. We need to do better. Innovative strategies need to move into early stage clinical trials as quickly as it is safe, and if successful, these therapies should efficiently obtain regulatory approval and widespread clinical application. In late 2009 and 2010 the Society for Immunotherapy of Cancer (SITC), convened an "Immunotherapy Summit" with representatives from immunotherapy organizations representing Europe, Japan, China and North America to discuss collaborations to improve development and delivery of cancer immunotherapy. One of the concepts raised by SITC and defined as critical by all parties was the need to identify hurdles that impede effective translation of cancer immunotherapy. With consensus on these hurdles, international working groups could be developed to make recommendations vetted by the participating organizations. These recommendations could then be considered by regulatory bodies, governmental and private funding agencies, pharmaceutical companies and academic institutions to facilitate changes necessary to accelerate clinical translation of novel immune-based cancer therapies. The critical hurdles identified by representatives of the collaborating organizations, now organized as the World Immunotherapy Council, are presented and discussed in this report. Some of the identified hurdles impede all investigators, others hinder investigators only in certain regions or institutions or are more relevant to specific types of immunotherapy or first-in-humans studies. Each of these hurdles can significantly delay clinical translation of promising advances in immunotherapy yet be overcome to improve outcomes of patients with cancer

    Next generation of immunotherapy for melanoma

    No full text
    Purpose: Immunotherapy has a long history with striking but limited success in patients with melanoma. To date, interleukin-2 and interferon-alfa2b are the only approved immunotherapeutic agents for melanoma in the United States. Design: Tumor evasion of host immune responses, and strategies for overcoming tumor-induced immunosuppression are reviewed. Several novel immunotherapies currently in worldwide phase III clinical testing for melanoma are discussed. Results: The limitations of immunotherapy for melanoma stem from tumor-induced mechanisms of immune evasion that render the host tolerant of tumor antigens. For example, melanoma inhibits the maturation of antigen-presenting cells, preventing full T-cell activation and downregulating the effector antitumor immune response. New immunotherapies targeting critical regulatory elements of the immune system may overcome tolerance and promote a more effective antitumor immune response. These include monoclonal antibodies that block the cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and toll-like receptor 9 (TLR9) agonists. Blockade of CTLA4 prevents inhibitory signals that downregulate T-cell activation. TLR9 agonists stimulate dendritic cell maturation and ultimately induce a more effective immune response. These approaches have been shown to stimulate acute immune activation with concomitant appearance of transient adverse events mediated by the immune system. The pattern and duration of immune responses associated with these new modalities differ from those associated with cytokines and cytotoxic agents. In addition, vaccines are being developed that may ultimately target melanoma either alone or in combination with these immunomodulatory therapies. Conclusion: The successes of cytokine and interferon therapy of melanoma, coupled with an array of new approaches, are generating new enthusiasm for the immunotherapy of melanoma. © 2008 by the American Society of Clinical Oncology

    Adenoviral transgene ubiquitination enhances mouse immunization and class I presentation by human dendritic cells

    No full text
    International audienceTherapeutic vaccination aims at a strong stimulation of antigen-specific CD8(+) T-cells, so that they differentiate into effectors active in vivo against antigenic targets. Two adenovirus vectors ( Ad) encoding two HLA-A*0201-restricted HIV epitope sequences (pol 476 and pol 589) were constructed. The Ad differ by the presence or absence of a ubiquitin monomer sequence (AdUb(+) and AdUb(-)). The effect of transgene product ubiquitination was analyzed on (1) in vivo, the immunization of Ad vaccinated HLA-A* 0201 humanized HHD mice and ( 2) in vitro, the presentation of the transgene encoded peptides by transduced human dendritic cells ( DC). In vivo, we found that immunization of humanized HHD mice with AdUb(+) elicited a transgene product-specific ;interferon (INF)-gamma CD8(+) T-cell response detectable by enzyme-linked immunospot (ELISPOT), whereas the AdUb(-) construction did not. Antigen-specific cytotoxic T lymphocytes (CTL) were also generated in HHD mice immunized with AdUb(+) and not with AdUb(-). In vitro, using human AdUb(+)-transduced DC, a sizeable expansion of pol 476 and pol 589 tetramer positive CD8(+) T cells as well as CD8(+) CTL were obtained in healthy donors. Compared to AdUb(-)-transduced DC, AdUb(+)-transduced DC triggered a higher number of pol 476-specific IFN-gamma-secreting CD8(+) T cells. In agreement, AdUb(+) transduced DC, used as target in a Cr-51-release assay, were more efficiently lysed by peptide-specific CTL than AdUb(-)-transduced DC. In conclusion, the addition of an ubiquitin sequence to the adenoviral transgene, used as an antigen source, resulted in both in vivo enhanced CD8(+) T-cell immunogenicity in HHD mice and in vitro increased HLA class I-restricted presentation of encoded peptides by human DC
    corecore