1,276 research outputs found

    Microsomal membrane subfractionation by a lectin affinity method

    Get PDF
    AbstractConcanavalin A-agarose treatment of rat liver post-mitochondrial supernatant removes a fraction rich in cholesterol and 5'-nucleotidase activity but low in glucose-6-phosphatase. At the same time, radiolabel associated with the cell surface is removed. We interpret these findings as evidence that concanavalin A binds to, and under these circumstances will remove, fragments of plasma membrane present in the microsomal fraction and believe that this may be of use in the gentle, and rapid subfractionation of microsomal membranes

    Layered terbium hydroxides for simultaneous drug delivery and imaging

    Get PDF
    Layered rare-earth hydroxides have begun to gather increasing attention as potential theranostic platforms owing to their extensive intercalation chemistry combined with magnetic and fluorescent properties. In this work, the potential of layered terbium hydroxide (LTbH) as a platform for simultaneous drug delivery and fluorescence imaging was evaluated. LTbH-Cl ([Tb2(OH)5]Cl·yH2O) was loaded with three nonsteroidal anti-inflammatory drugs (diclofenac, ibuprofen, and naproxen) via ion-exchange. Drug release studies in phosphate buffered saline (pH = 7.4) revealed all three formulations release their drug cargo rapidly over the course of approximately 5 hours. In addition, solid state fluorescence studies indicated that fluorescence intensity is strongly dependent on the identity of the guest anion. It was postulated that this feature may be used to track the extent of drug release from the formulation, which was subsequently successfully demonstrated for the ibuprofen loaded LTbH. Overall, LTbH exhibits good biocompatibility, high drug loading, and a strong, guest-dependent fluorescence signal, all of which are desirable qualities for theranostic applications

    Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    Full text link
    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ\Pi\Sigma\Pi polynomial. We first prove that the first problem is \#P-hard and then devise a O∗(3ns(n))O^*(3^ns(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n)s(n). Later, this upper bound is improved to O∗(2n)O^*(2^n) for ΠΣΠ\Pi\Sigma\Pi polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ\Pi\Sigma polynomials. On the negative side, we prove that, even for ΠΣΠ\Pi\Sigma\Pi polynomials with terms of degree ≤2\le 2, the first problem cannot be approximated at all for any approximation factor ≥1\ge 1, nor {\em "weakly approximated"} in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ\lambda-approximation algorithm for ΠΣΠ\Pi\Sigma\Pi polynomials with terms of degrees no more a constant λ≥2\lambda \ge 2. On the inapproximability side, we give a n(1−ϵ)/2n^{(1-\epsilon)/2} lower bound, for any ϵ>0,\epsilon >0, on the approximation factor for ΠΣΠ\Pi\Sigma\Pi polynomials. When terms in these polynomials are constrained to degrees ≤2\le 2, we prove a 1.04761.0476 lower bound, assuming P≠NPP\not=NP; and a higher 1.06041.0604 lower bound, assuming the Unique Games Conjecture

    Tidal torques. A critical review of some techniques

    Full text link
    We point out that the MacDonald formula for body-tide torques is valid only in the zeroth order of e/Q, while its time-average is valid in the first order. So the formula cannot be used for analysis in higher orders of e/Q. This necessitates corrections in the theory of tidal despinning and libration damping. We prove that when the inclination is low and phase lags are linear in frequency, the Kaula series is equivalent to a corrected version of the MacDonald method. The correction to MacDonald's approach would be to set the phase lag of the integral bulge proportional to the instantaneous frequency. The equivalence of descriptions gets violated by a nonlinear frequency-dependence of the lag. We explain that both the MacDonald- and Darwin-torque-based derivations of the popular formula for the tidal despinning rate are limited to low inclinations and to the phase lags being linear in frequency. The Darwin-torque-based derivation, though, is general enough to accommodate both a finite inclination and the actual rheology. Although rheologies with Q scaling as the frequency to a positive power make the torque diverge at a zero frequency, this reveals not the impossible nature of the rheology, but a flaw in mathematics, i.e., a common misassumption that damping merely provides lags to the terms of the Fourier series for the tidal potential. A hydrodynamical treatment (Darwin 1879) had demonstrated that the magnitudes of the terms, too, get changed. Reinstating of this detail tames the infinities and rehabilitates the "impossible" scaling law (which happens to be the actual law the terrestrial planets obey at low frequencies).Comment: arXiv admin note: sections 4 and 9 of this paper contain substantial text overlap with arXiv:0712.105

    Size Matters: Origin of Binomial Scaling in Nuclear Fragmentation Experiments

    Get PDF
    The relationship between measured transverse energy, total charge recovered in the detector, and size of the emitting system is investigated. Using only very simple assumptions, we are able to reproduce the observed binomial emission probabilities and their dependences on the transverse energy.Comment: 14 pages, including 4 figure

    Influence of a low magnetic field on the thermal diffusivity of Bi-2212

    Full text link
    The thermal diffusivity of a Bi-2212 polycrystalline sample has been measured under a 1T magnetic field applied perpendicularly to the heat flux. The magnetic contribution to the heat carrier mean free path has been extracted and is found to behave as a simple power law. This behavior can be attributed to a percolation process of electrons in the vortex lattice created by the magnetic field.Comment: 10 pages, 3 figures; to be published in Phys. Rev.

    Thermally-induced expansion in the 8 GeV/c π−\pi^- + 197^{197}Au reaction

    Full text link
    Fragment kinetic energy spectra for reactions induced by 8.0 GeV/c π−\rm{\pi^-} beams incident on a 197\rm{^{197}}Au target have been analyzed in order to deduce the possible existence and influence of thermal expansion. The average fragment kinetic energies are observed to increase systematically with fragment charge but are nearly independent of excitation energy. Comparison of the data with statistical multifragmentation models indicates the onset of extra collective thermal expansion near an excitation energy of E*/A ≈\rm{\approx} 5 MeV. However, this effect is weak relative to the radial expansion observed in heavy-ion-induced reactions, consistent with the interpretation that the latter expansion may be driven primarily by dynamical effects such as compression/decompression.Comment: 12 pages including 4 postscript figure

    Specific Heat of Liquid Helium in Zero Gravity very near the Lambda Point

    Full text link
    We report the details and revised analysis of an experiment to measure the specific heat of helium with subnanokelvin temperature resolution near the lambda point. The measurements were made at the vapor pressure spanning the region from 22 mK below the superfluid transition to 4 uK above. The experiment was performed in earth orbit to reduce the rounding of the transition caused by gravitationally induced pressure gradients on earth. Specific heat measurements were made deep in the asymptotic region to within 2 nK of the transition. No evidence of rounding was found to this resolution. The optimum value of the critical exponent describing the specific heat singularity was found to be a = -0.0127+ - 0.0003. This is bracketed by two recent estimates based on renormalization group techniques, but is slightly outside the range of the error of the most recent result. The ratio of the coefficients of the leading order singularity on the two sides of the transition is A+/A- =1.053+ - 0.002, which agrees well with a recent estimate. By combining the specific heat and superfluid density exponents a test of the Josephson scaling relation can be made. Excellent agreement is found based on high precision measurements of the superfluid density made elsewhere. These results represent the most precise tests of theoretical predictions for critical phenomena to date.Comment: 27 Pages, 20 Figure

    Homologous Flares and Magnetic Field Topology in Active Region NOAA 10501 on 20 November 2003

    Get PDF
    We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous H-alpha ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the center of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ~ 110 deg within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasiseparatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four H-alpha ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.Comment: 24 pages, 10 figures, Solar Physics (accepted
    • …
    corecore