66 research outputs found

    Curved Tails in Polymerization-Based Bacterial Motility

    Full text link
    The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a visually striking signature of actin polymerization-based motility. Similar actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae, the Vaccinia virus, and vesicles and microspheres in related in vitro systems. We show that the torque required to produce the curvature in the tail can arise from randomly placed actin filaments pushing the bacterium or particle. We find that the curvature magnitude determines the number of actively pushing filaments, independent of viscosity and of the molecular details of force generation. The variation of the curvature with time can be used to infer the dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The entry of Theileria parva merozoites into bovine erythrocytes occurs by a process similar to sporozoite invasion of lymphocytes

    No full text
    The entry of Theileria parva merozoites into bovine erythrocytes in vivo is described and compared to sporozoite invasion of lymphocytes. Merozoites make initial contact with erythrocytes with any part of their surface and invasion of the host cell does not require the reorientation of the apical end of the merozoite towards the surface of the erythrocyte. After the initial attachment the merozoite and host cell membranes form a continual close junction with the 2 apposed membranes separated by a 6-8 nm gap containing moderately dense material. The progressive circumferential 'zippering' of these closely apposed membranes leads to the movement of the parasite into the erythrocyte. The newly internalized merozoite which is completely surrounded by the erythrocyte plasma membrane escapes from this enclosing membrane by a process involving the discharge of at least the rhoptries; whether the merozoite also contain other types of secretory organelles (e.g. micronemes, microspheres or dense bodies) remains to be determined. Morphologically, the events involved in merozoite invasion of erythrocytes are almost identical to the process of sporozoite invasion of lymphocytes but differ significantly from the entry process of the invasive stages of other Apicomplexan parasites

    MHC class I molecules are an essential cell surface component involved in Theileria parva sporozoite binding to bovine lymphocytes

    No full text
    The major histocompatibility complex (MHC) class I molecules are ubiquious cell surface molecules involved in the cell-mediated immune response. We show here, using a number of different, independent approaches, that these proteins are an essential component of the host cell surface receptor involved in Theileria parva sporozoite invasion. Monoclonal antibodies (mAbs) reactive with common determinants on MHC class I molecules and with B-2 microglobulin inhibites sporozoite entry by specifically preventing the intitial binding event. However, in experiments using lymphocytes from heterozygous cattle in which at least four MHC class I gene products are expressed, mAbs which reacted with only one of these products did not inhibit entry. Using a series of bovine deletion mutant cell lines from which one or both MHC class I haplotypes had been lost, sporozoite binding and entry clearly correlated with the level of class I surface expression. While the elevel of sporozoite entry into cells in which one of the MHC class I haplotypes was lost was only slightly lower than into the parent cells, in a double deletion cell line having less than 5 percent of the class I expression of the parent cells the level of infection was only 4.3% of that into the parent cells. Furthermore, sporozoite entry into cells from a spontaneously arising mutant cell line exhibiting low levels of class I expression was correspondingly low. Treatment of lymphocytes with IL-2 produced a significant increase in host cell susceptibility and sporozoite entry and this increase correlated with either an increase in the number of target molecules per host cell, or in the binding of bovine MHC class I molecules to the mAbs. In particular, a significant increase in the level of reactivity with mAb W6/32 was observed. Lastly, we show that parasite entry can be competitively inhibited with an isolated sporozoite surface protein, p67. However, p67 binds weakly to lymphocyte surface molecules and initial attemps to use p67 to isolate the relevant host cell molecule(s) have not been successful

    Mechano-electric Transduction

    No full text
    • …
    corecore