6 research outputs found
Electron Spin Relaxation in a Semiconductor Quantum Well
A fully microscopic theory of electron spin relaxation by the
D'yakonov-Perel' type spin-orbit coupling is developed for a semiconductor
quantum well with a magnetic field applied in the growth direction of the well.
We derive the Bloch equations for an electron spin in the well and define
microscopic expressions for the spin relaxation times. The dependencies of the
electron spin relaxation rate on the lowest quantum well subband energy,
magnetic field and temperature are analyzed.Comment: Revised version as will appear in Physical Review
Temperature dependence of current self-oscillations and electric field domains in sequential tunneling doped superlattices
We examine how the current--voltage characteristics of a doped weakly coupled
superlattice depends on temperature. The drift velocity of a discrete drift
model of sequential tunneling in a doped GaAs/AlAs superlattice is calculated
as a function of temperature. Numerical simulations and theoretical arguments
show that increasing temperature favors the appearance of current
self-oscillations at the expense of static electric field domain formation. Our
findings agree with available experimental evidence.Comment: 7 pages, 5 figure
Theory of weak continuous measurements in a strongly driven quantum bit
Continuous spectroscopic measurements of a strongly driven superconducting
qubit by means of a high-quality tank circuit (a linear detector) are under
study. Output functions of the detector, namely, a spectrum of voltage
fluctuations and an impedance, are expressed in terms of the qubit spectrum and
magnetic susceptibility. The nonequilibrium spectrum of the current
fluctuations in the qubit loop and the linear response function of the driven
qubit coupled to a heat bath are calculated with Bloch-Redfield and rotating
wave approximations. Backaction effects of the qubit on the tank and the tank
on the qubit are analyzed quantitatively. We show that the voltage spectrum of
the tank provides detailed information about a frequency and a decay rate of
Rabi oscillations in the qubit. It is found that both an efficiency of
spectroscopic measurement and measurement-induced decoherence of the qubit
demonstrate a resonant behaviour as the Rabi frequency approaches the resonant
frequency of the tank. We determine conditions when the spectroscopic
observation of the Rabi oscillations in the flux qubit with the tank circuit
can be considered as a weak continuous quantum measurement.Comment: 28 page
Self-induced and induced transparencies of two-dimensional and three- dimensional superlattices
The phenomenon of transparency in two-dimensional and three-dimensional
superlattices is analyzed on the basis of the Boltzmann equation with a
collision term encompassing three distinct scattering mechanisms (elastic,
inelastic and electron-electron) in terms of three corresponding distinct
relaxation times. On this basis, we show that electron heating in the plane
perpendicular to the current direction drastically changes the conditions for
the occurrence of self-induced transparency in the superlattice. In particular,
it leads to an additional modulation of the current amplitudes excited by an
applied biharmonic electric field with harmonic components polarized in
orthogonal directions. Furthermore, we show that self-induced transparency and
dynamic localization are different phenomena with different physical origins,
displaced in time from each other, and, in general, they arise at different
electric fields.Comment: to appear in Physical Review
Aharonov-Bohm interferometry with quantum dots: scattering approach versus tunneling picture
We address the question of how to model electron transport through closed
Aharonov-Bohm interferometers which contain quantum dots. By explicitly
studying interferometers with one and two quantum dots, we establish the
connection between a tunneling-Hamiltonian formulation on the one hand and a
scattering-matrix approach on the other hand. We prove that, under certain
circumstances, both approaches are equivalent, i.e., both types of models can
describe the same experimental setups. Furthermore, we analyze how the
interplay of the Aharonov-Bohm phase and the orbital phase associated with the
lengths of the interferometers' arms affect transport properties.Comment: 8 pages, 8 figures, published versio
Dephasing in sequential tunneling through a double-dot interferometer
We analyze dephasing in a model system where electrons tunnel sequentially
through a symmetric interference setup consisting of two single-level quantum
dots. Depending on the phase difference between the two tunneling paths, this
may result in perfect destructive interference. However, if the dots are
coupled to a bath, it may act as a which-way detector, leading to partial
suppression of the phase-coherence and the reappearance of a finite tunneling
current. In our approach, the tunneling is treated in leading order whereas
coupling to the bath is kept to all orders (using P(E) theory). We discuss the
influence of different bath spectra on the visibility of the interference
pattern, including the distinction between "mere renormalization effects" and
"true dephasing".Comment: 18 pages, 8 figures; For a tutorial introduction to dephasing see
http://iff.physik.unibas.ch/~florian/dephasing/dephasing.htm