7 research outputs found

    Interaction between affordance and handedness recognition: a chronometric study

    Get PDF
    The visualization of tools and manipulable objects activates motor-related areas in the cortex, facilitating possible actions toward them. This pattern of activity may underlie the phenomenon of object affordance. Some cortical motor neurons are also covertly activated during the recognition of body parts such as hands. One hypothesis is that different subpopulations of motor neurons in the frontal cortex are activated in each motor program; for example, canonical neurons in the premotor cortex are responsible for the affordance of visual objects, while mirror neurons support motor imagery triggered during handedness recognition. However, the question remains whether these subpopulations work independently. This hypothesis can be tested with a manual reaction time (MRT) task with a priming paradigm to evaluate whether the view of a manipulable object interferes with the motor imagery of the subject's hand. The MRT provides a measure of the course of information processing in the brain and allows indirect evaluation of cognitive processes. Our results suggest that canonical and mirror neurons work together to create a motor plan involving hand movements to facilitate successful object manipulation

    Gap effect and reaction time distribution: simple vs choice manual responses

    No full text
    It is well known that saccadic reaction times (SRT) are reduced when the target is preceded by the offset of the fixation point (FP) - the gap effect. Some authors have proposed that the FP offset also allows the saccadic system to generate a separate population of SRT, the express saccades. Nevertheless, there is no agreement as to whether the gap effect and express responses are also present for manual reaction times (MRT). We tested the gap effect and the MRT distribution in two different conditions, i.e., simple and choice MRT. In the choice MRT condition, subjects need to identify the side of the stimulus and to select the appropriate response, while in the simple MRT these stages are not necessary. We report that the gap effect was present in both conditions (22 ms for choice MRT condition; 15 ms for simple MRT condition), but, when analyzing the MRT distributions, we did not find any clear evidence for express manual responses. The main difference in MRT distribution between simple and choice conditions was a shift towards shorter values for simple MRT

    Influence of short incompatible practice on the Simon effect:transfer along the vertical dimension and across vertical and horizontal dimensions

    No full text
    In spatial compatibility and Simon tasks, the response is faster when stimulus and response locations are on the same side than when they are on opposite sides. It has been shown that a spatial incompatible practice leads to a subsequent modulation of the Simon effect along the horizontal dimension. It has also been reported that this modulation occurs both along and across vertical and horizontal dimensions, but only after intensive incompatible training (600 trials). In this work, we show that this modulatory effect can be obtained with a smaller number of incompatible trials, changing the spatial arrangement of the vertical response keys to obtain a stronger dimensional overlap between the spatial codes of stimuli and response keys. The results of Experiment 1 showed that 80 incompatible vertical trials abolished the Simon effect in the same dimension. Experiment 2 showed that a modulation of the vertical Simon effect could be obtained after 80 horizontal incompatible trials. Experiment 3 explored whether the transfer effect can also occur in a horizontal Simon task after a brief vertical spatial incompatibility task, and results were similar to the previous experiments. In conclusion, we suggest that the spatial arrangement between response key and stimulus locations may be critical to establish the short-term memory links that enable the transfer of learning between brief incompatible practices and the Simon effects, both along the vertical dimension and across vertical and horizontal dimensions

    Mental rotation of anthropoid hands: a chronometric study

    No full text
    It has been shown that mental rotation of objects and human body parts is processed differently in the human brain. But what about body parts belonging to other primates? Does our brain process this information like any other object or does it instead maximize the structural similarities with our homologous body parts? We tried to answer this question by measuring the manual reaction time (MRT) of human participants discriminating the handedness of drawings representing the hands of four anthropoid primates (orangutan, chimpanzee, gorilla, and human). Twenty-four right-handed volunteers (13 males and 11 females) were instructed to judge the handedness of a hand drawing in palm view by pressing a left/right key. The orientation of hand drawings varied from 0º (fingers upwards) to 90º lateral (fingers pointing away from the midline), 180º (fingers downwards) and 90º medial (finger towards the midline). The results showed an effect of rotation angle (F(3, 69) = 19.57, P < 0.001), but not of hand identity, on MRTs. Moreover, for all hand drawings, a medial rotation elicited shorter MRTs than a lateral rotation (960 and 1169 ms, respectively, P < 0.05). This result has been previously observed for drawings of the human hand and related to biomechanical constraints of movement performance. Our findings indicate that anthropoid hands are essentially equivalent stimuli for handedness recognition. Since the task involves mentally simulating the posture and rotation of the hands, we wondered if "mirror neurons" could be involved in establishing the motor equivalence between the stimuli and the participants' own hands

    Experimental context modulates warning signal effects

    No full text
    Previous studies have shown that saccadic eye responses but not manual responses were sensitive to the kind of warning signal used, with visual onsets producing longer saccadic latencies compared to visual offsets. The aim of the present study was to determine the effects of distinct warning signals on manual latencies and to test the premise that the onset interference, in fact, does not occur for manual responses. A second objective was to determine if the magnitude of the warning effects could be modulated by contextual procedures. Three experimental conditions based on the kind of warning signal used (visual onset, visual offset and auditory warning) were run in two different contexts (blocked and non-blocked). Eighteen participants were asked to respond to the imperative stimulus that would occur some milliseconds (0, 250, 500 or 750 ms) after the warning signal. The experiment consisted in three experimental sessions of 240 trials, where all the variables were counterbalanced. The data showed that visual onsets produced longer manual latencies than visual offsets in the non-blocked context (275 vs 261 ms; P < 0.001). This interference was obtained, however, only for short intervals between the warning and the stimulus, and was abolished when the blocked context was used (256 vs 255 ms; P = 0.789). These results are discussed in terms of bottom-up and top-down interactions, mainly those related to the role of attentional processing in canceling out competitive interactions and suppressive influences of a distractor on the relevant stimulus
    corecore