12 research outputs found

    Record of a Lancelet from Hawaii

    Get PDF

    Rapid Assessment of Nonindigenous Marine Species on Coral Reefs in the Main Hawaiian Islands

    Get PDF
    v. ill. 23 cm.QuarterlyCoral reefs at Kaua‘i, O‘ahu, Moloka‘i, Maui, and Hawai‘i were surveyed using a rapid assessment method for marine nonindigenous and cryptogenic species commonly found in Hawaiian harbors and embayments with restricted circulation. In 41 sites surveyed by rapid assessment 26 nonindigenous and cryptogenic species (three algae, 19 invertebrates, and four fishes) were recorded from a total of 486 total taxa identified, and 17 of the nonindigenous and cryptogenic species occurred at only one or two sites. No more than six nonindigenous and cryptogenic species were recorded at any one site, and 21 of the 41 sites had fewer than three. By comparison, laboratory identification of samples collected from seven of the sites closest to harbors found 6–23 nonindigenous and cryptogenic species per site. Values for nonindigenous and cryptogenic species from rapid assessment were compared with factors potentially influencing spread and proliferation of introduced marine species. These factors included distances from harbors, boat-launching ramps, stream mouths, and shorelines; degree of shoreline urbanization; quantity of artificial surfaces in the water; reef condition and isolation from the open ocean; and native species richness. A best subsets regression model explained over 65% of the variance in nonindigenous and cryptogenic species from two predictor variables and their interaction: isolation from the open ocean and number of native taxa, with most of the variance explained by a highly significant relationship of nonindigenous and cryptogenic species with isolation from open-ocean conditions

    Note on Cryptodromiopsis tridens (Brachyura, Dromiidae)

    Get PDF

    Molecular biogeography and diversification of the endemic terrestrial fauna of the Hawaiian Islands

    No full text
    Oceanic islands have played a central role in biogeography and evolutionary biology. Here, we review molecular studies of the endemic terrestrial fauna of the Hawaiian archipelago. For some groups, monophyly and presumed single origin of the Hawaiian radiations have been confirmed (achatinelline tree snails, drepanidine honeycreepers, drosophilid flies, Havaika spiders, Hylaeus bees, Laupala crickets). Other radiations are derived from multiple colonizations (Tetragnatha and Theridion spiders, succineid snails, possibly Dicranomyia crane flies, Porzana rails). The geographic origins of many invertebrate groups remain obscure, largely because of inadequate sampling of possible source regions. Those of vertebrates are better known, probably because few lineages have radiated, diversity is far lower and morphological taxonomy permits identification of probable source regions. Most birds, and the bat, have New World origins. Within the archipelago, most radiations follow, to some degree, a progression rule pattern, speciating as they colonize newer from older islands sequentially, although speciation often also occurs within islands. Most invertebrates are single-island endemics. However, among multi-island species studied, complex patterns of diversification are exhibited, reflecting heightened dispersal potential (succineids, Dicranomyia). Instances of Hawaiian taxa colonizing other regions are being discovered (Scaptomyza flies, succineids). Taxonomy has also been elucidated by molecular studies (Achatinella snails, drosophilids). While molecular studies on Hawaiian fauna have burgeoned since the mid-1990s, much remains unknown. Yet the Hawaiian fauna is in peril: more than 70 per cent of the birds and possibly 90 per cent of the snails are extinct. Conservation is imperative if this unique fauna is to continue shedding light on profound evolutionary and biogeographic questions
    corecore