179 research outputs found

    Quenching of Weak Interactions in Nucleon Matter

    Full text link
    We have calculated the one-body Fermi and Gamow-Teller charge-current, and vector and axial-vector neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16 and 0.24 fm−3^{-3} and proton fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calculations with the Argonne v18 and Urbana IX two- and three-nucleon interactions. The squares of the charge current matrix elements are found to be quenched by 20 to 25 % by the short-range correlations in nucleon matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a spin up proton quasi-particle to be a bare spin up/down proton/neutron. We also calculate the matrix elements of the nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions which give the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However ≄\geq 3-body terms are necessary to reproduce the compressibility. All presented results use the simple 2-body cluster approximation to calculate the correlated basis matrix elements.Comment: submitted to PR

    Can three-flavor oscillations solve the solar neutrino problem?

    Get PDF
    The most promising solution to the solar neutrino problem are neutrino oscillations, which usually are analyzed within the reduced 2-flavor scheme, because the solutions found therein reasonably well reproduce the recent data of Super-Kamiokande about the recoil-electron energy spectrum, zenith-angle and seasonal variations, and the event rate data of all the neutrino detectors. In this work, however, a survey of the complete parameter space of 3-flavor oscillations is performed. Basically eight new additional solutions could be identified, where the best one with \Delta m(12)^2=2.7x10^(-10) eV^2, \Delta m(13)^2=1.0x10^(-5) eV^2, \Theta(12)=23, and \Theta(13)=1.3 (denoted SVO) is slightly more probable than any 2-flavor solution. However, including the results of the atmospheric neutrino problem excludes all 3-flavour solutions apart from the SLMA-solution (\Delta m(12)^2=7.9x10^(-6) eV^2, \Delta m(13)^2=2.5x10^(-4) eV^2, \Theta(12)=1.4, and \Theta(13)=20). Besides, the ability of SNO and Borexino to discriminate the various 2- and 3-flavor solutions is investigated. Only with very good statistics in these experiments the correct solution to the solar neutrino problem can be identified unambiguously.Comment: 22 pages, 19 figures, REVTeX, submitted to Phys.Rev.D, article with better resolved figures available under http://www.mpa-garching.mpg.de/~schlattl/public.htm

    Three-generation flavor transitions and decays of supernova relic neutrinos

    Get PDF
    If neutrinos have mass, they can also decay. Decay lifetimes of cosmological interest can be probed, in principle, through the detection of the redshifted, diffuse neutrino flux produced by all past supernovae--the so-called supernova relic neutrino (SRN) flux. In this work, we solve the SRN kinetic equations in the general case of three-generation flavor transitions followed by invisible (nonradiative) two-body decays. We then use the general solution to calculate observable SRN spectra in some representative decay scenarios. It is shown that, in the presence of decay, the SRN event rate can basically span the whole range below the current experimental upper bound--a range accessible to future experimental projects. Radiative SRN decays are also briefly discussed.Comment: 25 pages, including 7 figure

    Lepton Flavour Violating Leptonic/Semileptonic Decays of Charged Leptons in the Minimal Supersymmetric Standard Model

    Full text link
    We consider the leptonic and semileptonic (SL) lepton flavour violating (LFV) decays of the charged leptons in the minimal supersymmetric standard model (MSSM). The formalism for evaluation of branching fractions for the SL LFV charged-lepton decays with one or two pseudoscalar mesons, or one vector meson in the final state, is given. Previous amplitudes for the SL LFV charged-lepton decays in MSSM are improved, for instance the Îł\gamma-penguin amplitude is corrected to assure the gauge invariance. The decays are studied not only in the model-independent formulation of the theory in the frame of MSSM, but also within the frame of the minimal supersymmetric SO(10) model within which the parameters of the MSSM are determined. The latter model gives predictions for the neutrino-Dirac Yukawa coupling matrix, once free parameters in the model are appropriately fixed to accommodate the recent neutrino oscillation data. Using this unambiguous neutrino-Dirac Yukawa couplings, we calculate the LFV leptonic and SL decay processes assuming the minimal supergravity scenario. A very detailed numerical analysis is done to constrain the MSSM parameters. Numerical results for SL LFV processes are given, for instance for tau -> e (mu) pi0, tau -> e (mu) eta, tau -> e (mu) eta', tau -> e (mu) rho0, tau -> e (mu) phi, tau -> e (mu) omega, etc.Comment: 36 pages, 3 tables, 5 .eps figure

    Measurements of exclusive B_s^0 decays at the Y(5S) resonance

    Full text link
    Several exclusive Bs0B_s^0 decays are studied using a 1.86 fb-1 data sample collected at the Y(5S) resonance with the Belle detector at the KEKB asymmetric energy e^+ e^- collider. In the Bs0→Ds−π+B_s^0 \to D_s^- \pi^+ decay mode we find 10 Bs0B_s^0 candidates and measure the corresponding branching fraction. Combining the B_s^0 -> D_s^{(*)-} \pi^+, B_s^0 -> D_s^{(*)-} \rho^+, B_s^0 -> J/\psi \phi and B_s^0 -> J/\psi \eta decay modes, a significant Bs0B_s^0 signal is observed. The ratio \sigma (e^+ e^- -> B_s^* \bar{B}_s^*) / \sigma (e^+ e^- -> B_s^{(*)} \bar{B}_s^{(*)}) = (93^{+7}_{-9} \pm 1)% is obtained at the Y(5S) energy, indicating that Bs0B_s^0 meson production proceeds predominantly through the creation of Bs∗Bˉs∗B^*_s \bar{B}^*_s pairs. The Bs0B_s^0 and Bs∗B_s^* meson masses are measured to be M(B_s^0)=(5370 \pm 1 \pm 3)MeV/c^2 and M(B_s^*)=(5418 \pm 1 \pm 3)MeV/c^2. Upper limits on the B_s^0 -> \gamma \gamma, B_s^0 -> \phi \gamma, B_s^0 -> K^+ K^- and B_s^0 -> D_s^{(*)+} D_s^{(*)-} branching fractions are also reported.Comment: 9 pages, 5 figures, published in Phys. Rev. D76, 012002 (2007

    Measurement of the near-threshold e+e−→DDˉe^+e^- \to D \bar D cross section using initial-state radiation

    Full text link
    We report measurements of the exclusive cross section for e+e−→DDˉe^+e^- \to D \bar D , where D=D0D=D^0 or D+D^+, in the center-of-mass energy range from the DDˉD \bar D threshold to 5GeV/c25\mathrm{GeV}/c^2 with initial-state radiation. The analysis is based on a data sample collected with the Belle detector with an integrated luminosity of 673 fb−1\mathrm{fb}^{-1}.Comment: Presented at EPS07 and LP07 conferences, published in PRD(RC

    Search for Resonant B±→K±h→K±γγB^{\pm}\to K^{\pm} h \to K^{\pm} \gamma \gamma Decays at Belle

    Get PDF
    We report measurements and searches for resonant B±→K±h→K±γγB^{\pm} \to K^{\pm} h \to K^{\pm} \gamma \gamma decays where hh is a η,ηâ€Č,ηc,ηc(2S),χc0,χc2,J/ψ\eta,\eta^{\prime},\eta_{c},\eta_{c}(2S),\chi_{c0},\chi_{c2},J/\psi meson or the X(3872) particle.Comment: accepted by Physics Letters

    Search for B+ -> D*+ pi0 decay

    Full text link
    We report on a search for the doubly Cabibbo suppressed decay B+ -> D*+ pi0, based on a data sample of 657 million BBbar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric energy e+ e- collider. We find no significant signal and set an upper limit of Br(B+ -> D*+ pi0) < 3.6 x 10^-6 at the 90% confidence level. This limit can be used to constrain the ratio between suppressed and favored B -> D* pi decay amplitudes, r < 0.051, at the 90% confidence level.Comment: 5pages, 2figures, submitted to PRL (v1); PRL published version (v2: minor corrections in the text

    Study of charmonia in four-meson final states produced in two-photon collisions

    Get PDF
    We report measurements of charmonia produced in two-photon collisions and decaying to four-meson final states, where the meson is either a charged pion or a charged kaon. The analysis is based on a 395fb^{-1} data sample accumulated with the Belle detector at the KEKB electron-positron collider. We observe signals for the three C-even charmonia eta_c(1S), chi_{c0}(1P) and chi_{c2}(1P) in the pi^+pi^-pi^+pi^-, K^+K^-pi^+pi^- and K^+K^-K^+K^- decay modes. No clear signals for eta_c(2S) production are found in these decay modes. We have also studied resonant structures in charmonium decays to two-body intermediate meson resonances. We report the products of the two-photon decay width and the branching fractions, Gamma_{gamma gamma}B, for each of the charmonium decay modes.Comment: 22 pages, 12 figure

    Moments of the Hadronic Invariant Mass Spectrum in B --> X_c l nu Decays at Belle

    Get PDF
    We present a measurement of the hadronic invariant mass squared (M^2_X) spectrum in charmed semileptonic B meson decays B --> X_c l nu based on 140 fb^-1 of Belle data collected near the Y(4S) resonance. We determine the first, the second central and the second non-central moments of this spectrum for lepton energy thresholds ranging between 0.7 and 1.9 GeV. Full correlations between these measurements are evaluated.Comment: published version of the paper (one figure added, minor changes in the text); 16 pages, 3 figures, 10 table
    • 

    corecore