176 research outputs found

    Gas chromatographic studies of the relative retention of the sulfur isotopes in carbonyl sulfide, carbon disulfide, and sulfur dioxide

    Get PDF
    A precision gas chromatograph, coupled to a quadrupole mass spectrometer and an on-line computer, was used to study the fractionation on Porasil A of the /sup 32/S//sup 34/S isotopic pair in a variety of sulfur-containing molecules. Carbonyl sulfide (COS) yielded an average ..cap alpha.. value of 1.00074 +- 0.00017 (standard deviation) for the temperature range 25/sup 0/C to 75/sup 0/C. The carbon disulfide (CS/sub 2/) value was 1.00069 +- 0.00023 for the range 53/sup 0/C to 103/sup 0/C, and that for sulfur dioxide (SO/sub 2/) was 1.00090 +- 0.00018 for the range 62/sup 0/C to 112/sup 0/C. Differential thermodynamic data have been reported. A Porapak Q column showed no fractionation of this isotopic pair in these three molecules

    Population connectivity of the highly migratory shortfin mako (Isurus oxyrinchus Rafinesque 1810) and implications for management in the Southern Hemisphere

    Get PDF
    Published: 20 November 2018In this paper we combine analyses of satellite telemetry and molecular data to investigate spatial connectivity and genetic structure among populations of shortfin mako (Isurus oxyrinchus) in and around Australian waters, where this species is taken in recreational and commercial fisheries. Mitochondrial DNA data suggest matrilineal substructure across hemispheres, while nuclear DNA data indicate shortfin mako may constitute a globally panmictic population. There was generally high genetic connectivity within Australian waters. Assessing genetic connectivity across the Indian Ocean basin, as well as the extent that shortfin mako exhibit sex biases in dispersal patterns would benefit from future improved sampling of adult size classes, particularly of individuals from the eastern Indian Ocean. Telemetry data indicated that Australasian mako are indeed highly migratory and frequently make long-distance movements. However, individuals also exhibit fidelity to relatively small geographic areas for extended periods. Together these patterns suggest that shortfin mako populations may be genetically homogenous across large geographical areas as a consequence of few reproductively active migrants, although spatial partitioning exists. Given that connectivity appears to occur at different scales, management at both the national and regional levels seems most appropriate.Shannon Corrigan, Andrew D. Lowther, Luciano B. Beheregaray, Barry D. Bruce, Geremy Cliff, Clinton A. Duffy, Alan Foulis, Malcolm P. Francis, Simon D. Goldsworthy, John R. Hyde, Rima W. Jabado, Dovi Kacev, Lindsay Marshall, Gonzalo R. Mucientes, Gavin J. P. Naylor, Julian G. Pepperell, Nuno Queiroz, William T. White, Sabine P. Wintner and Paul J. Roger

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio
    • 

    corecore