49 research outputs found

    Recommendations for acquisition, interpretation and reporting of whole body low dose CT in patients with multiple myeloma and other plasma cell disorders: a report of the IMWG Bone Working Group

    Get PDF
    Whole Body Low Dose CT (WBLDCT) has important advantages as a first-line imaging modality for bone disease assessment in patients with plasma cell disorders and has been included in the 2014 International Myeloma Working Group (IMWG) criteria for multiple myeloma (MM) definition. Nevertheless, standardization guidelines for the optimal use of WBLDCT in MM patients are still lacking, preventing its more widespread use, both in daily practice and clinical trials. The aim of this report by the Bone Group of the IMWG is to provide practical recommendations for the acquisition, interpretation and reporting of WBLDCT in patients with multiple myeloma and other plasma cell disorders

    Spinal tumors [Spinale Tumoren]

    No full text
    Spinal tumors are often classified into three anatomical compartments on the basis of their relationship to the dural space and myelon. The most common primary spinal neoplasms are glial tumors (ependymoma, astrocytoma), nerve sheath tumors (schwannoma, neurofibroma) and meningioma. Metastases represent another common tumor entity and can occur in every spinal compartment. Magnetic resonance imaging (MRI) is the most important noninvasive method for spinal tumor imaging. © 2021, Springer Medizin Verlag GmbH, ein Teil von Springer Nature

    Functional and molecular MRI of the bone marrow in multiple myeloma

    No full text
    MRI plays an important role in the management of patients with plasma cell neoplasms and has been recognized as a biomarker of malignancy in the novel criteria for the diagnosis of multiple myeloma. Functional and molecular MRI techniques such as diffusion-weighted imaging (spinal or whole body), intravoxel incoherent motion, and dynamic contrast enhanced MRI, provide additional information related to tumor cellularity and angiogenesis, which may have prognostic implications for patients with smoldering and symptomatic myeloma. These non-invasive functional techniques are also being evaluated as imaging biomarkers for response assessment in myeloma patients. The purpose of this article is to provide a comprehensive critical review on the current use and potential future applications of these advanced MRI techniques in multiple myeloma. In addition, we will address the technologies involved and describe the qualitative and quantitative characteristics of normal bone marrow with these techniques. © 2018 The Authors

    The Role of Imaging in the Treatment of Patients With Multiple Myeloma in 2016

    No full text
    The novel criteria for the diagnosis of symptomatic multiple myeloma have revealed the value of modern imaging for the management of patients with myeloma. Whole-body low-dose CT (LDCT) has increased sensitivity over conventional radiography for the detection of osteolytic lesions, and several myeloma organizations and institutions have suggested that whole-body LDCT should replace conventional radiography for the work-up of patients with myeloma. MRI is the best imaging method for the depiction of marrow infiltration by myeloma cells. Whole-body MRI (or at least MRI of the spine and pelvis if whole-body MRI is not available) should be performed for all patients with smoldering multiple myeloma with no lytic lesions to look for occult disease, which may justify treatment. In addition, MRI accurately illustrates the presence of plasmacytomas, spinal cord, and/or nerve compression for surgical intervention or radiation therapy; it is also recommended for the work-up of solitary bone plasmacytoma, and it may distinguish malignant from benign fractures (which is very important in cases of patients in biochemical remission with no other signs of progression). Diffusion weighted imaging (DWI) seems to improve MRI diagnosis in patients with myeloma. PET/CT is a functional imaging technique, more sensitive than conventional radiography for the detection of lytic lesions, which probably allows better definition of complete response and minimal residual disease compared with all other imaging methods. PET/CT has shown the best results in the follow-up of patients with myeloma and has an independent prognostic value both at diagnosis and following treatment. PET/CT can also be used for the work-up of solitary bone plasmacytoma and nonsecretory myeloma

    Imaging of Gynecologic Malignancy in a Reproductive Age Female: Cancer During Pregnancy

    No full text
    Gynecologic malignancies are common among cancers diagnosed during pregnancy, especially those of cervical and ovarian origin. Imaging is an important part of the diagnosis, staging, and follow-up of pregnancy-associated gynecologic tumors, with sonography and magnetic resonance (MR) imaging being the most suitable modalities. MR imaging is particularly useful in cervical cancer for the evaluation of tumor size, nodal, and extrapelvic disease. Ovarian tumor is initially diagnosed with sonography; MR imaging should be performed in cases of indeterminate ultrasonography findings and for staging. Pregnancy-related changes may be responsible for erroneous diagnosis; radiologists should be aware of such pitfalls to avoid misinterpretation. © 2019 Elsevier Inc

    A new pet for myeloma

    No full text
    In this issue of Blood, Bartel and colleagues report the independent predictive value of the PET/CT and of the FDG suppression before transplantation in newly diagnosed myeloma patients who were treated using the TT3 regimen

    Imaging during pregnancy: What the radiologist needs to know

    No full text
    During the last decades, there has been a growing demand for medical imaging in gravid women. Imaging of the pregnant woman is challenging as it involves both the mother and the fetus and, consequently, several medical, ethical, or legal considerations are likely to be raised. Theoretically, all currently available imaging modalities may be used for the evaluation of the pregnant woman; however, in practice, confusion regarding the safety of the fetus often results in unnecessary avoidance of useful diagnostic tests, especially those involving ionizing radiation. This review article is focused on the current safety guidelines and considerations regarding the use of different imaging modalities in the pregnant population; also presented is an imaging work-up for the most common medical conditions of pregnant women, with emphasis on fetal and maternal safety. © 2021 Société française de radiologi

    Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI)

    No full text
    To investigate the influence of age, sex and spinal level on perfusion parameters of normal lumbar bone marrow with dynamic contrast-enhanced MRI (DCE MRI). Sixty-seven subjects referred for evaluation of low back pain or sciatica underwent DCE MRI of the lumbar spine. After subtraction of dynamic images, a region of interest (ROI) was placed on each lumbar vertebral body of all subjects, and time intensity curves were generated. Consequently, perfusion parameters were calculated. Statistical analysis was performed to search for perfusion differences among lumbar vertebrae and in relation to age and sex. Upper (L1, L2) and lower (L3, L4, L5) vertebrae showed significant differences in perfusion parameters (p<0.05). Vertebrae of subjects younger than 50 years showed significantly higher perfusion compared to vertebrae of older ones (p<0.05). Vertebrae of females demonstrated significantly increased perfusion compared to those of males of corresponding age (p<0.05). All perfusion parameters, except for washout (WOUT), showed a mild linear correlation with age. Time to maximum slope (TMSP) and time to peak (TTPK) showed the same correlation with sex (0.22<r<0.32, p<0.05). Our results indicate increased perfusion of the upper compared to the lower lumbar spine, of younger compared to older subjects and of females compared to males. © European Society of Radiology 2008
    corecore