887 research outputs found
Autologous keratinocyte suspension in platelet concentrate accelerates and enhances wound healing - a prospective randomized clinical trial on skin graft donor sites: platelet concentrate and keratinocytes on donor sites.
BACKGROUND: Wound healing involves complex mechanisms, which, if properly chaperoned, can enhance patient recovery. The abilities of platelets and keratinocytes may be harnessed in order to stimulate wound healing through the formation of platelet clots, the release of several growth factors and cytokines, and cell proliferation. The aim of the study was to test whether autologous keratinocyte suspensions in platelet concentrate would improve wound healing. The study was conducted at the Lausanne University Hospital, Switzerland in 45 patients, randomized to three different topical treatment groups: standard treatment serving as control, autologous platelet concentrate (PC) and keratinocytes suspended in autologous platelet concentrate (PCâ+âK). Split thickness skin graft donor sites were chosen on the anterolateral thighs of patients undergoing plastic surgery for a variety of defects. Wound healing was assessed by the duration and quality of the healing process. Pain intensity was evaluated at day five.
RESULTS: Healing time was reduced from 13.9â±â0.5 days (meanâ±âSEM) in the control group to 7.2â±â0.2 days in the PC group (Pâ<â0.01). An addition of keratinocytes in suspension further reduced the healing time to 5.7â±â0.2 days. Pain was reduced in both the PC and PCâ+âK groups. Data showed a statistically detectable advantage of using PCâ+âK over PC alone (Pâ<â0.01).
CONCLUSION: The results demonstrate the positive contribution of autologous platelets combined with keratinocytes in stimulating wound healing and reducing pain. This strikingly simple approach could have a significant impact on patient care, especially critically burned victims for whom time is of the essence. CLINICAL TRIAL REGISTRY INFORMATION: Protocol Record Identification Number: 132/03Registry URL: http://www.clinicaltrials.gov
Parameters of the Magnetic Flux inside Coronal Holes
Parameters of magnetic flux distribution inside low-latitude coronal holes
(CHs) were analyzed. A statistical study of 44 CHs based on Solar and
Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284\AA
images showed that the density of the net magnetic flux, , does
not correlate with the associated solar wind speeds, . Both the area and
net flux of CHs correlate with the solar wind speed and the corresponding
spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A
possible explanation for the low correlation between and
is proposed. The observed non-correlation might be rooted in the structural
complexity of the magnetic field. As a measure of complexity of the magnetic
field, the filling factor, , was calculated as a function of spatial
scales. In CHs, was found to be nearly constant at scales above 2 Mm,
which indicates a monofractal structural organization and smooth temporal
evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP
data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller
than 2 Mm, the filling factor decreases rapidly, which means a mutlifractal
structure and highly intermittent, burst-like energy release regime. The
absence of necessary complexity in CH magnetic fields at scales above 2 Mm
seems to be the most plausible reason why the net magnetic flux density does
not seem to be related to the solar wind speed: the energy release dynamics,
needed for solar wind acceleration, appears to occur at small scales below 1
Mm.Comment: 6 figures, approximately 23 pages. Accepted in Solar Physic
Turning to God in the Face of Ostracism: Effects of Social Exclusion on Religiousness
The present research proposes that individuals who are socially excluded can turn to religion to cope with the experience. Empirical studies conducted to test this hypothesis consistently found that socially excluded persons reported (a) significantly higher levels of religious affiliation (Studies 1, 2, and 4) and (b) stronger intentions to engage in religious behaviors (Study 2) than comparable, nonexcluded individuals. Direct support for the stress-buffering function of religiousness was also found, with a religious prime reducing the aggression-eliciting effects of consequent social rejection (Study 5). These effects were observed in both Christian and Muslim samples, revealing that turning to religion can be a powerful coping response when dealing with social rejection. Theoretical and practical implications of these findings are discussed
Desingularization of vortices for the Euler equation
We study the existence of stationary classical solutions of the
incompressible Euler equation in the plane that approximate singular
stationnary solutions of this equation. The construction is performed by
studying the asymptotics of equation -\eps^2 \Delta
u^\eps=(u^\eps-q-\frac{\kappa}{2\pi} \log \frac{1}{\eps})_+^p with Dirichlet
boundary conditions and a given function. We also study the
desingularization of pairs of vortices by minimal energy nodal solutions and
the desingularization of rotating vortices.Comment: 40 page
United classification of cosmic gamma-ray bursts and their counterparts
United classification of gamma-ray bursts and their counterparts is
established on the basis of measured characteristics: photon energy E and
emission duration T. The founded interrelation between the mentioned
characteristics of events consists in that, as the energy increases, the
duration decreases (and vice versa). The given interrelation reflects the
nature of the phenomenon and forms the E-T diagram, which represents a natural
classification of all observed events in the energy range from 10E9 to 10E-6 eV
and in the corresponding interval of durations from about 10E-2 up to 10E8 s.
The proposed classification results in the consequences, which are principal
for the theory and practical study of the phenomenon.Comment: Keywords Gamma rays: burst
Critical Examination of the "Field-Theoretical Approach" to the Neutron-Antineutron Oscillations in Nuclei
We demonstrate that so called "infrared divergences" which have been
discussed in some publications during several years, do not appear within the
correct treatment of analytical properties of the transition amplitudes, in
particular, of the second order pole structure of the amplitudes describing the
transition in nuclei. Explicit calculation with the help of the
Feynman diagram technique shows that the neutron-antineutron oscillations are
strongly suppressed in the deuteron, as well as in heavier nuclei, in
comparison with the oscillations in vacuum. General advantages and some
difficulties of the field theoretical methods applied in nuclear theory are
reminded for the particular example of the parity violating
capture amplitude.Comment: 15 pages, 4 figures; prepared for Eur.Phys.J.
On the structure and evolution of a polar crown prominence/filament system
Polar crown prominences are made of chromospheric plasma partially circling
the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D
dynamics of a polar crown prominence using high cadence EUV images from the
Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft
of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using
time series across specific structures we compare flows across the disk in 195A
with the prominence dynamics seen on the limb. The densest prominence material
forms vertical columns which are separated by many tens of Mm and connected by
dynamic bridges of plasma that are clearly visible in 304/171A two-color
images. We also observe intermittent but repetitious flows with velocity 15
km/s in the prominence that appear to be associated with EUV bright points on
the solar disk. The boundary between the prominence and the overlying cavity
appears as a sharp edge. We discuss the structure of the coronal cavity seen
both above and around the prominence. SDO/HMI and GONG magnetograms are used to
infer the underlying magnetic topology. The evolution and structure of the
prominence with respect to the magnetic field seems to agree with the filament
linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics
Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar
The Value of Information for Populations in Varying Environments
The notion of information pervades informal descriptions of biological
systems, but formal treatments face the problem of defining a quantitative
measure of information rooted in a concept of fitness, which is itself an
elusive notion. Here, we present a model of population dynamics where this
problem is amenable to a mathematical analysis. In the limit where any
information about future environmental variations is common to the members of
the population, our model is equivalent to known models of financial
investment. In this case, the population can be interpreted as a portfolio of
financial assets and previous analyses have shown that a key quantity of
Shannon's communication theory, the mutual information, sets a fundamental
limit on the value of information. We show that this bound can be violated when
accounting for features that are irrelevant in finance but inherent to
biological systems, such as the stochasticity present at the individual level.
This leads us to generalize the measures of uncertainty and information usually
encountered in information theory
Explicit formulae in probability and in statistical physics
We consider two aspects of Marc Yor's work that have had an impact in
statistical physics: firstly, his results on the windings of planar Brownian
motion and their implications for the study of polymers; secondly, his theory
of exponential functionals of Levy processes and its connections with
disordered systems. Particular emphasis is placed on techniques leading to
explicit calculations.Comment: 14 pages, 2 figures. To appear in Seminaire de Probabilites, Special
Issue Marc Yo
Renormalizing Partial Differential Equations
In this review paper, we explain how to apply Renormalization Group ideas to
the analysis of the long-time asymptotics of solutions of partial differential
equations. We illustrate the method on several examples of nonlinear parabolic
equations. We discuss many applications, including the stability of profiles
and fronts in the Ginzburg-Landau equation, anomalous scaling laws in
reaction-diffusion equations, and the shape of a solution near a blow-up point.Comment: 34 pages, Latex; [email protected]; [email protected]
- âŠ