Parameters of magnetic flux distribution inside low-latitude coronal holes
(CHs) were analyzed. A statistical study of 44 CHs based on Solar and
Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284\AA
images showed that the density of the net magnetic flux, Bnet, does
not correlate with the associated solar wind speeds, Vx. Both the area and
net flux of CHs correlate with the solar wind speed and the corresponding
spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A
possible explanation for the low correlation between Bnet and Vx
is proposed. The observed non-correlation might be rooted in the structural
complexity of the magnetic field. As a measure of complexity of the magnetic
field, the filling factor, f(r), was calculated as a function of spatial
scales. In CHs, f(r) was found to be nearly constant at scales above 2 Mm,
which indicates a monofractal structural organization and smooth temporal
evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP
data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller
than 2 Mm, the filling factor decreases rapidly, which means a mutlifractal
structure and highly intermittent, burst-like energy release regime. The
absence of necessary complexity in CH magnetic fields at scales above 2 Mm
seems to be the most plausible reason why the net magnetic flux density does
not seem to be related to the solar wind speed: the energy release dynamics,
needed for solar wind acceleration, appears to occur at small scales below 1
Mm.Comment: 6 figures, approximately 23 pages. Accepted in Solar Physic