38,710 research outputs found
SuperWIMP Gravitino Dark Matter from Slepton and Sneutrino Decays
Dark matter may be composed of superWIMPs, superweakly-interacting massive
particles produced in the late decays of other particles. We focus on the case
of gravitinos produced in the late decays of sleptons or sneutrinos and assume
they are produced in sufficient numbers to constitute all of non-baryonic dark
matter. At leading order, these late decays are two-body and the accompanying
energy is electromagnetic. For natural weak-scale parameters, these decays have
been shown to satisfy bounds from Big Bang nucleosynthesis and the cosmic
microwave background. However, sleptons and sneutrinos may also decay to
three-body final states, producing hadronic energy, which is subject to even
more stringent nucleosynthesis bounds. We determine the three-body branching
fractions and the resulting hadronic energy release. We find that superWIMP
gravitino dark matter is viable and determine the gravitino and
slepton/sneutrino masses preferred by this solution to the dark matter problem.
In passing, we note that hadronic constraints disfavor the possibility of
superWIMPs produced by neutralino decays unless the neutralino is photino-like.Comment: 22 pages, updated figures and minor changes, version to appear in
Phys. Rev.
Transport Properties in the "Strange Metal Phase" of High Tc Cuprates: Spin-Charge Gauge Theory Versus Experiments
The SU(2)xU(1) Chern-Simons spin-charge gauge approach developed earlier to
describe the transport properties of the cuprate superconductors in the
``pseudogap'' regime, in particular, the metal-insulator crossover of the
in-plane resistivity, is generalized to the ``strange metal'' phase at higher
temperature/doping. The short-range antiferromagnetic order and the gauge field
fluctuations, which were the key ingredients in the theory for the pseudogap
phase, also play an important role in the present case. The main difference
between these two phases is caused by the existence of an underlying
statistical -flux lattice for charge carriers in the former case, whereas
the background flux is absent in the latter case. The Fermi surface then
changes from small ``arcs'' in the pseudogap to a rather large closed line in
the strange metal phase. As a consequence the celebrated linear in T dependence
of the in-plane and out-of-plane resistivity is shown explicitly to recover.
The doping concentration and temperature dependence of theoretically calculated
in-plane and out-of-plane resistivity, spin-relaxation rate and AC conductivity
are compared with experimental data, showing good agreement.Comment: 14 pages, 5 .eps figures, submitted to Phys. Rev. B, revised version
submitted on 24 Oc
Towards Bose-Einstein Condensation of Electron Pairs: Role of Schwinger Bosons
It can be shown that the bosonic degree of freedom of the tightly bound
on-site electron pairs could be separated as Schwinger bosons. This is
implemented by projecting the whole Hilbert space into the Hilbert subspace
spanned by states of two kinds of Schwinger bosons (to be called binon and
vacanon) subject to a constraint that these two kinds of bosonic quasiparticles
cannot occupy the same site. We argue that a binon is actually a kind of
quantum fluctuations of electron pairs, and a vacanon corresponds to a vacant
state. These two bosonic quasiparticles may be responsible for the
Bose-Einstein condensation (BEC) of the system associated with electron pairs.
These concepts are also applied to the attractive Hubbard model with strong
coupling, showing that it is quite useful. The relevance of the present
arguments to the existing theories associated with the BEC of electron pairs is
briefly commented.Comment: Revtex, one figur
Fractional exclusion and braid statistics in one dimension: a study via dimensional reduction of Chern-Simons theory
The relation between braid and exclusion statistics is examined in
one-dimensional systems, within the framework of Chern-Simons statistical
transmutation in gauge invariant form with an appropriate dimensional
reduction. If the matter action is anomalous, as for chiral fermions, a
relation between braid and exclusion statistics can be established explicitly
for both mutual and nonmutual cases. However, if it is not anomalous, the
exclusion statistics of emergent low energy excitations is not necessarily
connected to the braid statistics of the physical charged fields of the system.
Finally, we also discuss the bosonization of one-dimensional anyonic systems
through T-duality.Comment: 19 pages, fix typo
What Sets the Radial Locations of Warm Debris Disks?
The architectures of debris disks encode the history of planet formation in
these systems. Studies of debris disks via their spectral energy distributions
(SEDs) have found infrared excesses arising from cold dust, warm dust, or a
combination of the two. The cold outer belts of many systems have been imaged,
facilitating their study in great detail. Far less is known about the warm
components, including the origin of the dust. The regularity of the disk
temperatures indicates an underlying structure that may be linked to the water
snow line. If the dust is generated from collisions in an exo-asteroid belt,
the dust will likely trace the location of the water snow line in the
primordial protoplanetary disk where planetesimal growth was enhanced. If
instead the warm dust arises from the inward transport from a reservoir of icy
material farther out in the system, the dust location is expected to be set by
the current snow line. We analyze the SEDs of a large sample of debris disks
with warm components. We find that warm components in single-component systems
(those without detectable cold components) follow the primordial snow line
rather than the current snow line, so they likely arise from exo-asteroid
belts. While the locations of many warm components in two-component systems are
also consistent with the primordial snow line, there is more diversity among
these systems, suggesting additional effects play a role
Supergravity with a Gravitino LSP
We investigate supergravity models in which the lightest supersymmetric
particle (LSP) is a stable gravitino. We assume that the next-lightest
supersymmetric particle (NLSP) freezes out with its thermal relic density
before decaying to the gravitino at time t ~ 10^4 s - 10^8 s. In contrast to
studies that assume a fixed gravitino relic density, the thermal relic density
assumption implies upper, not lower, bounds on superpartner masses, with
important implications for particle colliders. We consider slepton, sneutrino,
and neutralino NLSPs, and determine what superpartner masses are viable in all
of these cases, applying CMB and electromagnetic and hadronic BBN constraints
to the leading two- and three-body NLSP decays. Hadronic constraints have been
neglected previously, but we find that they provide the most stringent
constraints in much of the natural parameter space. We then discuss the
collider phenomenology of supergravity with a gravitino LSP. We find that
colliders may provide important insights to clarify BBN and the thermal history
of the Universe below temperatures around 10 GeV and may even provide precise
measurements of the gravitino's mass and couplings.Comment: 24 pages, updated figures and minor changes, version to appear in
Phys.Rev.
A Comprehensive Dust Model Applied to the Resolved Beta Pictoris Debris Disk from Optical to Radio Wavelengths
We investigate whether varying the dust composition (described by the optical
constants) can solve a persistent problem in debris disk modeling--the
inability to fit the thermal emission without over-predicting the scattered
light. We model five images of the beta Pictoris disk: two in scattered light
from HST/STIS at 0.58 microns and HST/WFC3 at 1.16 microns, and three in
thermal emission from Spitzer/MIPS at 24 microns, Herschel/PACS at 70 microns,
and ALMA at 870 microns. The WFC3 and MIPS data are published here for the
first time. We focus our modeling on the outer part of this disk, consisting of
a parent body ring and a halo of small grains. First, we confirm that a model
using astronomical silicates cannot simultaneously fit the thermal and
scattered light data. Next, we use a simple, generic function for the optical
constants to show that varying the dust composition can improve the fit
substantially. Finally, we model the dust as a mixture of the most plausible
debris constituents: astronomical silicates, water ice, organic refractory
material, and vacuum. We achieve a good fit to all datasets with grains
composed predominantly of silicates and organics, while ice and vacuum are, at
most, present in small amounts. This composition is similar to one derived from
previous work on the HR 4796A disk. Our model also fits the thermal SED,
scattered light colors, and high-resolution mid-IR data from T-ReCS for this
disk. Additionally, we show that sub-blowout grains are a necessary component
of the halo.Comment: 23 pages, 20 figures, accepted to Ap
- …