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Abstract. The relation between braid and exclusion statistics is examined in one-

dimensional systems, within the framework of Chern-Simons statistical transmutation

in gauge invariant form with an appropriate dimensional reduction. If the matter

action is anomalous, as for chiral fermions, a relation between braid and exclusion

statistics can be established explicitly for both mutual and nonmutual cases. However,

if it is not anomalous, the exclusion statistics of emergent low energy excitations is

not necessarily connected to the braid statistics of the physical charged fields of the

system. Finally, we also discuss the bosonization of one-dimensional anyonic systems

through T-duality.
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1. Introduction

In quantum mechanics of identical particles, there are two ways, a priori rather different,

to define the statistics.

One is the braid(or exchange) statistics, which can be defined through the

monodromy of the many-body wave-function as follows: For C-valued wave functions,

when one performs a positively oriented exchange between two particles, the wave

function acquires a phase factor ei(1−α)π, with α as the braid-statistics parameter and

in space-dimensions d < 3. It is in general arbitrary. In fact considering all possible

oriented exchanges in an n-particle wave function these phase factors provide an abelian

representation of the braid group Bn[1, 2]. Obviously, fermions(bosons) correspond to

α = 0(α = 1); for α 6= 0, 1 the statistics is called fractional. In one or two dimensional

space, the existence of braid statistics is well known [3, 4, 5], and the corresponding

particle is dubbed as anyon. The first example of what will be called a braid statistics

of fields in d = 1 appears for the free fields in Ref. [6]. The earliest examples in

interacting theories can be found in nuce in Ref. [7], and are discussed in details in

Ref. [8] and in Ref. [9]. According to Wilczek[5], the anyon in 2D can be viewed as a

charged particle(fermion or boson) bound to a flux with the statistics coded through the

Aharonov-Bohm effect. The flux-binding changing the braid statistics can be realized

through a minimal coupling to a Chern-Simons gauge field and this procedure is called

statistical transmutation[10]. For d ≥ 3 only α = 0 or 1 are allowed, since the orientation

of the exchange is irrelevant and the braid group collapses to the permutation group.

The other kind of statistics can be defined through state counting, which is known

as (Haldane’s) exclusion statistics and can be viewed as an effective interaction among

particles occupying identical or different states in the Hilbert space. The exclusion

statistics is characterized by a parameter g, first introduced by Haldane [11], which

measures the change rate of the dimension D of Hilbert space with respect to the total

particle number N when an additional particle is introduced. For a single species of

particles, there is a linear relation between D and N , ∆D = (g − 1)∆N . Again, g = 0

for fermions and g = 1 for bosons. It turns out that 1/(1− g) gives also the maximum

average occupation number for the quantum states below the Fermi energy[12]. The

fractional exclusion statistics can be viewed as a generalized Pauli’s exclusion principle

and it exists in arbitrary dimensions[11]. Following the nomenclature in Refs.[13],

we call exclusons the low-energy quasiparticles/quasiholes obeying fractional exclusion

statistics. The best known examples of exclusons arise in a number of one dimensional

systems solvable by the thermodynamic Bethe ansatz, such as the Yang-Yang δ-function

gas [14, 15, 16] or the Calogero-Sutherland model [17, 18, 19, 20, 21]. In two dimensions

there are also a few strongly correlated systems whose low-lying excitations exhibit

the fractional exclusion statistics, [11, 12, 22], including the ”Laughlin vortices” of the

fractional quantum Hall effect. For relativistic elementary particles the fermion(boson)

exclusion statistics can be derived from the antisymmetry(symmetry) of the many-body

wave-function and therefore the two ways of defining the statistics can be identified.



Fractional exclusion and braid statistics in one dimension 3

Both types of statistics are naturally related to interactions. In the Chern-Simons

theory of anyons, the braid statistics arises simply as a charge-current interaction among

particles mediated by the statistical gauge fields (see [23]). Although the anyon model is

easy to construct using Chern-Simons statistical transmutation, even the 2D free anyon

gas is extremely difficult to solve due to the highly entangled motions of anyons. The

exclusion statistics is also a consequence of interactions. It is actually an emergent

phenomenon in the low-energy behavior of an interacting system consisting of physical

particles with prescribed braid statistics(usually either fermion or boson). The exclusion

statistics can be directly applied to calculate the thermodynamics of the excluson

gases[12]. As a typical example, the Yang and Yang’s thermodynamic Bethe ansatz

solution of the one dimensional repulsive δ-potential boson gas can be reformulated as

a free excluson gas obeying nontrivial mutual exclusion statistics[24]. More generally,

in one dimensional integrable models the thermodynamic Bethe ansatz equations can

be reinterpreted exactly as statistical interactions between exclusons with identical or

different momenta, determined by the two-body scattering phase shift[24]. Based on

these observations, Wu and Yu proved that the low energy physics of an excluson gas

is equivalent to that of a one-component Luttinger liquid with Haldane’s controlling

parameter λ identified as the statistical parameter 1−g[13, 25], thus providing a unified

description for various interactions using fractional exclusion statistics. Inspired by the

success in one dimensional systems, there were attempts to generalize the Fermi liquid

theory to a “Haldane” liquid with fractional exclusion statistics in higher dimension to

provide a unified description to the low energy behavior of interacting systems[26]. The

fractional statistics(both exchange and exclusion) has also been proposed to provide a

better mean field theory for some strongly correlated systems, especially the cuprate

superconductors[27, 28, 29, 30].

A natural question to ask is what is the relation between the two aspects of the

fractional statistics, i.e. between α and g. It turns out that there is no universal

relationship, but relations appear in specific examples. In two dimensional quantum

Hall systems with Hall conductance σh, we can derive a linear relation between g and α,

g = 2πσhα[23], clarifying and extending previous results. More generally we proved the

existence of a relation in sytems with chiral edge currents. Although there were many

studies on the fractional statistics in one dimension, to the best of our knowledge, it

is still lacking a satisfactory understandings of the relation between g and α, probably

in part because the exchange of two particles in one dimension necessarily involves

scattering processes, thus there is no unique way to separate the braid statistics from

the dynamical processes[24, 31, 32, 13, 25].

In this article, we examine the relation between braid and exclusion fractional

statistics of particles moving in a straight line, including chiral cases. In the present

study, we adopt the fermion-based Chern-Simons theory to unambiguously define the

braid statistics. This is also the same framework adopted in our previous study on two

dimensional fractional statistics[23], but to discuss braid statistics in one dimension we

need a careful dimensional reduction following the technique developed in [33]. In this
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setup, we restrict to impenetrable two-body interactions, to have a well-defined braid

statistics. The main purpose of this article is then to study whether the Chern-Simons

statistical transmutation can induce non-trivial fractional exclusion statistics or not. It

turns out that if the gauge effective action of the matter system minimally coupled to

the statistical gauge field is gauge invariant, the exclusion statistics of the emergent

exclusons has nothing to do with the braid statistics of the physical charged fields of

the model, but the statistical transmutation shifts the value of their Fermi momenta.

However, if the gauge effective action of the matter system is anomalous(chiral case),

then a precise relation between the braid and exclusion statistics emerges. Thus, our

present study for one-dimensional systems together with our previous study for two-

dimensional systems provides a systematic description of the relation between fractional

abelian exchange statistics and fractional exclusion statistics in low dimensions(d < 3)

in the same framework of Chern-Simons theory.

This article is organized as follows: in Sec. 2 the dimensional reduction of two

dimensional Chern-Simons theory is introduced, and with this formalism we calculate

the Green’s functions of noninteracting anyons. In Sec. 3 we present the results in

the presence of both fractional exchange and exclusion statistics for matter systems

that exhibit a gauge-invariant effective action if minimally coupled to the Chern-Simons

gauge field. In Secs. 4 and 5, we analyze the relation between the braid and exclusion

statistics emerging for noninteracting anyonic systems for both nonmutual and mutual

statistics. Finally, in Sec. 6 we sketch a derivation of the corresponding bosonization

formulas for one-dimensional anyonic system via T-duality. Throughout the paper we

use the euclidean path-integral formalism.

2. Chern-Simons theory and dimensional reduction for noninteracting

Anyons

We consider non-relativistic spinless fermions in one dimension with particle density ρ0

and Fermi velocity vf set to unit for simplicity. In the scaling limit, the low energy

physics is controlled by excitations near the two Fermi points ±kf with kf = πρ0 in the

noninteracting case. This allows us to decompose the non-relativistic fermion field Ψ in

the low-energy region into right and left movers as Ψ(x) ∼ ψR(x)e
ikfx

1
+ ψL(x)e

−ikfx
1
,

with the dynamics of a massless Dirac fermion described by the spinor doublet ψ =

(ψR, ψL)
t. For convenience we also use ψ1,2 to denote ψR,L, respectively.

To implement the braid statistics, we first embed the 1+1 dimensional spacetime

of the matter field with coordinates x0 and x1, into the 2+1 dimensional spacetime as

the plane at x2 = 0. Then we couple minimally the matter fields to a 2+1 dimensional

statistical gauge field Aµ, whose dynamics is described by the Chern-Simons action.

The total action in Euclidean space with metric tensor gµν = diag(−1,−1,−1) consists

of the following two terms:

Sf [ψ, ψ̄|A] =

∫

d2xψ̄iγµDµψ − i

∫

d2xρ0A0, (1)
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Scs[A] =
i

4πα

∫

d3xǫµνλAµ∂νAλ, (2)

where ρ0 is the expectation value of the fermion density with respect to the

noninteracting vacuum, and the covariant derivatives are defined as Dµ = ∂µ +

iAµ(x, x
2 = 0) with x = (x0, x1) and µ = 0, 1. The γ-matrices {γµ, γν} = 2gµν, and

ψ̄ = −iψ†γ0.

Being the matter field one-dimensional, one needs to carry out the dimensional

reduction from three to two dimensions, implemented following the technique developed

in Ref.[33]. Since the A0 field has no dynamics, it can be integrated out leading to the

following flux-binding constraint,

F12(x, x2) = −2πiαδ(x2)[j0(x) + iρ0], (3)

where jµ =: ψ̄γµψ : is the (normal ordered) Dirac current. (3) has the following solution:

A1(x, x
2) = iπαsgn(x2)[j0(x) + iρ0] + ∂1f(x, x

2),

A2(x, x
2) = ∂2f(x, x

2), (4)

where f(x, x2) is an arbitrary gauge function and the sign function is taken

antisymmetric, i.e., sgn(0) = 0. Inserting Eq. (4) into the remaining term of the Chern-

Simons action and in Eq. (1), we obtain a free Dirac fermion coupled to a pure gauge

field ∂µf , and by choosing the gauge A2 = 0 the gauge function f can be absorbed by

a redefinition of the fermion field, as we assume henceforth. It follows that the energy

spectrum and the correlators of the Fermi field ψ are controlled by local fermionic

excitations, unaffected by flux binding. This is due to the triviality of the total partition

function of the gauge field, leaving only the free fermion as the final result.

However, the correlators of the ψ field alone are not gauge invariant, hence they are

unphysical. Therefore, the states obtained from the vacuum acting with the Fermi field

ψ do not belong to the physical Hilbert space of the theory with action given by Eqs. (1)

and (2). In fact it is known that in gauge theories the physical charged excitations can

be created/annihilated by gauge invariant non-local fields acting on the physical Hilbert

space(see Ref.[34] and references therein). In the present case for α 6= 0, 1 these fields

obey non-trivial braid statistics and can be constructed as follows: The action Sf is

invariant under gauge transformation ψ → e−iΛψ and Aµ → Aµ+ ∂µΛ; correspondingly

the gauge-invariant anyon field is given by:

ψ̃R,L(x) ≡ ψR,L(x)e
−i

∫
Px

Aµdℓµ , (5)

where the path Px is a straight line from x1 to ∞ with fixed time x0. To avoid an

ill-defined crossing with the world lines of the fermions, we shift Px slightly from x2 = 0

to x2 = ǫ with ǫ an infinitesimal positive number. More precisely we take the limit

ǫ ց 0 on the correlation functions and technically one needs a compensating current

at infinity joining all the paths P appearing in the correlators, but we do not discuss

this matter here, referring for details to Refs.[28, 33]. The exponential in the r.h.s. of

Eq. (5) will be called gauge string. The low-energy anyon Green’s function including
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the Fermi momenta is given by:

Gα
ab(x, y) = 〈ψ̃a(x)ψ̃

†
b(y)〉e

−iπρ0[(−1)ax1−(−1)by1] (6)

with a = 1, 2 and the same for b, where the expectation value is now referred to zero

density. With the above prescription the braiding effect is captured by the gauge strings.

To calculate the Green’s function of the physical particles Gα
ab(x, y), one needs to

average Eq. (6) over the statistical gauge field Aµ weighted by the Chern-Simons action,

following Ref.[33]. We first insert Eq. (4) into Eq. (5), yielding

ψ̃a(x) = ψa(x)e
−iπαρ0x1+πα

∫
∞

x1
j0(x0,z1)dz1 . (7)

Then the Green’s function defined by Eq. (6) reads

Gα
ab(x− y) =

1

Z0f
e−iπρ

0[(−1)ax1−(−1)by1+α(x1−y1)]

×

∫

DψDψ̄ψa(x)ψ
†
b(y)e

∫
d2xψ̄iγµ[∂µ−iπαδ0µ∂0Qx,y(z)]ψ (8)

where Z0f ≡
∫

D[ψ, ψ̄]eSf [ψ,ψ̄|0] is the partition function of free Fermi field and

Qx,y(z) ≡ θ(z1 − x1)θ(z0 − x0)− θ(z1 − y1)θ(z0 − y0) (9)

with θ(x) being the step function. To calculate the Green’s function Eq. (8), we follow

Schwinger’s formalism[35], which leads to the exact correlation of the Fermi fields in the

presence of gauge field,

Gab(x− y|A) ≡
1

Z0f

∫

DψDψ̄ψa(x)ψ
†
b(y)e

∫
d2zψ̄iγµ(∂µ+iAµ)ψ

=
δab
2π

eiΘ
a
x,y[A]eSeff [A]

(x0 − y0) + i(−1)a(x1 − y1)
, (10)

where the functionals Θa
x,y and Seff are given by

Θa
x,y[Aµ] =

∫

d2z[∆−1(z − x)−∆−1(z − y)]

× [∂µAµ(z)− i(−1)aǫµν∂
µAν(z)], (11)

Seff [Aµ] =
1

2π

∫

d2zǫµν∂µAν(z)∆
−1ǫστ∂σAτ(z), (12)

with ∆ ≡ −∂µ∂
µ being the two dimensional Laplacian. Comparing Eq. (8) with the

Schwinger’s formula Eq. (10), by identifying Aµ = −παδ0µ∂0Qx,y, one immediately finds

the gauge-invariant anyon’s Green’s function

Gα
ab(x− y) =

δab
2π

e−i[α+(−1)a][πρ0(x1−y1)+arg(x−y)]

|x− y|1+(−1)aα+α2/2
. (13)

where we denote by arg(x) the argument of the complex number x0 + ix1.

The Green’s function Eq. (13) indicates that there is no correlation between the

left- and right-handed branches. When α = 0 one easily recovers the free fermion result,

and when α = 1, the Green’s function of the right-handed branch has the well-known

form |x− y|−1/2 of the one-dimensional hardcore bosons[36]. The braid statistics of the
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physical particles is reflected in the numerator of Eq. (13). If we exchange x and y with

increasing the argument of x − y by π, an additional phase e−iαπ appears besides the

Fermi statistical factor.

The free fermions obey the the Pauli’s exclusion principle, and each particle occupies

a volume of 2π/L for a finite system of length L in the (pseudo-) momentum space.

This gives rise to a finite Fermi area determined by the fermion density S = 2πρ. For

the general exclusons with non-mutual statistical interaction λ ≡ 1 − g, the occupied

volume per particle is modified to 2πλ/L, then the “Fermi area” is also changed with

δS/(δρ) = 2πλ. Since in our calculation the particle density is kept invariant when the

interactions are switched on, the exclusion statistics is eventually reflected in the change

of the Fermi area. We read the Fermi momenta off from the coefficient of (x1 − y1) in

the phase factor. Indeed, the Fermi points are shifted by the Chern-Simons coupling

from ±πρ0 to (±1 − α)πρ0. However, the Fermi area is still 2πρ0. Hence there is no

sign of non-trivial exclusion statistics.

3. Fractional braid and exclusion statistics in anyon ”Luttinger” Liquids

In the previous section we have considered the one dimensional free anyon systems, where

the elementary excitations still obey the conventional Pauli exclusion principle in spite

of their anyonic nature. Once the two-body interaction is turned on in one dimensional

fermion gases, the system may become in the low-energy limit an excluson gas (we adopt

the jargon invented in Refs.[13]) subject to the fractional exclusion statistics[11, 24, 13],

for which the low-energy physics can be described by a Luttinger liquid theory [13, 25],

as quoted in the introduction. Since the Luttinger liquid theory is applicable to a wide

class of one-dimensional systems, one may expect that the fractional exclusion statistics

is ubiquitous in one dimension.

In fact the exclusion statistics can also be introduced in the anyon systems. By

minimally coupling a one-dimensional Luttinger liquid to a Chern-Simon gauge field,

the two types of statistics can be realized simutaneously. A standard way to introduce

a non-trivial exclusion statistics is to add to the action Eq. (1) an interaction term

in the Luttinger-Thirring form (κπ/2)jµ(x)j
µ(x), which one can rewrite (up to a UV

renormalization) by introducing a vector Hubbard-Stratonovich(H.S.) field Bµ as
∫

d2x

[

1

2κπ
BµB

µ(x)− Bµj
µ(x)

]

. (14)

As result, the total partition function has the following form

ZT =

∫

DADBDψDψ̄eSf [ψ,ψ̄|A+B]+Scs[A]+
1

2πκ

∫
d2zBµBµ

, (15)

and the Green’s function of the anyon fields reads

Gα,κ
ab (x− y)

=
1

ZT
e−iπρ

0[(−1)ax1−(−1)by1]
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×

∫

DADBDψDψ̄ψ̃a(x)ψ̃
†
b(y)e

Sf [ψ,ψ̄|A+B]+Scs[A]+
1

2πκ

∫
d2zBµBµ

. (16)

The procedure is then similar to that given in Sec. 2, except that an additional

procedure of integrating over the H.S. auxiliary field B is needed now. We first integrate

over A0 leading to the same constraint, Eq. (4), which is then substituted into Eq. (1)

and Eq. (2). Now we obtain

Gα,κ
ab (x− y)

=
δab
2π

e−iπρ
0(−1)a(x1−y1)

(x0 − y0) + i(−1)a(x1 − y1)

×

∫

DBe
∫
d2z

BµBµ

2πκ
+iΘa

x,y[B+A]+Seff [B+A]−i
∫
d2zρ0(B0+A0)

∫

DBe
∫
d2z

BµBµ

2πκ
+Seff [B]−i

∫
d2zρ0B0

, (17)

where Aµ = −παδ0µ∂0Qx,y(z) as before. Using Eq. (11) and Eq. (12), integrating over B-

field is straightforward, though a little bit tedious, and it leads to the following Green’s

function in the presence of both Chern-Simons term and Thirring interaction:

Gα,κ
ab (x− y) =

δab
2π
e−i[α+(−1)a][

πρ0(x1−y1)
1+κ

+arg(x−y)]|x− y|−
(1+κ)2+[α+(−1)a]2

2(1+κ) . (18)

The Green’s function Eq. (18) goes back to the standard power-law form of the

Luttinger liquid theory, when α = 0. The Haldane’s controlling parameter can be read

off from the decaying exponent λ = 1/(1 + κ), which is also the exclusion parameter

according to Y.S. Wu and Y.Yu[13]. One can also identify the exclusion statistics by

fixing the particle number and directly measuring the occupied area in the pseudo-

momentum space after the interactions are switched on. As explained in the previous

section, the change of the Fermi area is in fact a direct consequence of the nontrivial

exclusion statistics. One can read the left and right Fermi wavevectors from the Green’s

function which are ±πρ0/(1 + κ), respectively. The corresponding Fermi area is then

2πρ0/(1 + κ) indicating a statistical interaction λ = 1/(1 + κ). This Fermi area is not

changed even when the corresponding fields becomes anyonic with braid parameter α,

implying that the braiding effect is not necessarily connected to the exclusion statistics.

This conclusion is in fact quite general, since it is obtained in the framework of one-

dimensional interacting Dirac fermions coupled to the Chern-Simons gauge field and

the Dirac Fermion describes the low energy physics of a large class of one dimensional

models. Our result is also consistent with that given in Ref.[37].

Before ending this section, we discuss the periodicity of α from the point of view

of Chern-Simons theory. As well known, for a finite number of non-relativistic particles

in the first-quantization formalism, there is a period 2 for the braid parameter α, since

binding 4π-flux does not change the exchange statistics. However, we notice that in the

low-energy description in the thermodynamic limit, the shift α → α + 2n(n ∈ Z)

is not trivial due to the coupling to the average particle density, which in fact

corresponds to multiple particle-hole excitations between the two Fermi points with

current 2nkf(κf = πρ0)[38]. In general cases with more sophisticated dispersion and

interaction, the generic form of the Green’s function for the physical anyons obeying the
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same braid statistics 1 − α is actually a sum of Gα+2n
RR , n ∈ Z, with α restricted in the

range [0, 2),

G̃α,κ(x− y) =
∑

n∈Z

Cn
2π
e−i(α+2n+1)[πρ0λ(x1−y1)+arg(x−y)]|x− y|−

λ−1+(α+2n+1)2λ
2 , (19)

where Cn’s are some regularization parameters depending on the details of UV limit

of specific models. Notice that the left- and right- handed fermions fall in the sectors

with n = −1 and n = 0, respectively. One may interpret the Green’s function Eq. (19)

as an anyon version in the Haldane’s harmonic-fluid theory of one-dimension quantum

gas[38, 39]. Indeed, by setting α = 0 or α = 1, it reduces to the well-known results for

fermions and bosons, respectively.

4. Fractional statistics for a chiral anyon system

The results given in Sec. 2 and 3 show unambiguously that there is no direct

relation between braid and exclusion statistics with or without interactions, if the one-

dimensional matter field couples to the statistical field gauge invariantly. However,

if the system is anomalous like chiral fermion, the fractional exclusion statistics can

be induced by braiding the free particles(chiral fermion) through the Chern-Simons

statistical transmutation, which is closely connected with our previous study in two-

dimensional systems[23], as we demonstrate in this section.

We consider the simple case of chiral fermions. It has been shown long time

ago that one cannot couple gauge-invariantly the chiral fermions to a gauge field

Aµ[40]. A way out is to consider the Dirac operator acting on the full mode-space

of a (1+1)-dimensional, two-component Dirac field and restrict the gauge field to its

chiral component (Aµ± iǫµνA
ν)/2 ≡ A±

µ /2. The corresponding action has the following

form:

Sc±f [ψ, ψ̄|A] =

∫

d2xψ̄iγµ
(

∂µ + i
A±
µ

2

)

ψ − i

∫

d2xA±
0 ρ

0
±, (20)

where ρ0± is the density of right- and left- handed fermion, respectively. Following Ref.

[41], we integrate over the chiral fermion field and obtain the effective action of the

gauge field

Sc±eff [Aµ] = Seff [
A±

2
] +

c

8π

∫

d2xAµA
µ − i

∫

d2xA±
0 ρ

0
±, (21)

where Seff [A] is given in Eq. (12) and a local quadratic term of Aµ is added, reflecting a

finite renormalization ambiguity due to the lack of gauge invariance with the coefficient

c, a priori an arbitrary real constant. Here we take the ”minimal choice” c = 1.

The effective actions Sc±eff [Aµ] for gauged chiral fermions are anomalous: performing

a gauge transformation, Aµ → Aµ + ∂µΛ, we have

Sc±eff(Aµ) → Sc±eff(Aµ)±
i

4π

∫

d2xΛǫµν∂
µAν(x). (22)
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A remedy for such an inconsistency is to take the chiral fermion system as the boundary

of a bulk system with Hall conductance ±1/(2π). The bulk effective action then reads

S±
bulk[A] = ±

i

4π

∫

d3xθ(x2)ǫµνλAµ∂νAλ − i

∫

d3xθ(x2)ρ0BA0, (23)

where θ(x2) is the Heaviside step function and ρ0B is the expectation value of the fermion

density in the bulk w.r.t. the noninteracting vacuum. The bulk action is also gauge

variant due to the existence of the boundary. In fact under the gauge transformation,

one finds

S±
bulk[A] → S±

bulk[A]∓
i

4π

∫

d2xΛǫµν∂
µAν(x). (24)

Comparing Eq. (24) and Eq. (22), we observe the anomaly of the bulk effective action

restricted in the region x2 > 0 cancel that of the matter field on its boundary. The

whole action is then gauge invariant.

Next, we couple the matter field to the statistical gauge field with support in the

whole space. After integrating out A0 we obtain the following constraint:

iδ(x2)[j±(x) + iρ0±]− ρ0Bθ(x
2) = −

F12

2πα
∓
F12

2π
θ(x2)±

1

4π
δ(x2)A1(x, x

2) (25)

where j±(x) ≡ [j0(x)± ij1(x)]/2 is the chiral current on the edge.

Before proceeding to the analysis of the statistics of chiral fermion, we first examine

the fractional statistics of the bulk fermion. In the bulk region x2 > 0, the constraint

reduces to F12 = 2παρ0B/(1 ± α). Note that the particle density ρB(α) in the ground

state depends on α and the flux density reads F12 = 2παρB(α) if the bulk system is

incompressible. Therefore, we find the relation between ρB(α) and the bare particle

density ρ0B for the bulk

ρB(α) = ρ0B/(1± α). (26)

which indicates that the Haldane’s statistical interaction g is ∓α. The relation between

g and α for a Hall insulator with a general Hall conductance σh has been given in a

different way in our previous study[23]. Inspired by the bulk result, one may expect

that the edge mode may also exhibit non-trivial fractional exclusion statistics. Let us

prove it by focusing only on the right-handed anyon.

The gauge invariant Green’s function for right-handed fermion in the presence of

Chern-Simons term reads

Gα
++(x− y) =

∫

DψDψ̄DAψ̃R(x)ψ̃
†
R(y)e

ikf (x
1−y1)eS

c+
f

[ψ,ψ̄|A]+S+
bulk

[A]+Sc.s.[A]

∫

DψDψ̄DAeS
c+
f

[ψ,ψ̄|A]+S+
bulk

[A]+Sc.s.[A]
. (27)

One can notice that there is only one Fermi wavevector kf = 2πρ+0 for the chiral fermions,

unlike for the Dirac fermions where two Fermi points exist. In Eq. (27), the left-handed

fermion is also present, however it is only an auxilliary free field to make the fermion

measure well defined[41]. In fact, the final result of Gα
++(x − y) defined in Eq. (27) is

completely anti-analytic without interference from the left-handed fermions. In order

to implement the α-braiding, we put the gauge string of the anyon field ψ̃a(x) outside

the bulk to avoid the entanglement with the bulk fermions.
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To calculate the Green’s function, we follow the same procedure given in previous

two sections. First, we solve the contraint Eq. (25) in the gauge A2 = 0, leading to the

following solution of the statistical gauge field for the right-handed anyon

A1(x, x
2) = iπαsgn(x2)[j+(x) + iρ0+]− θ(x2)x22παρB(α), (28)

where we take θ(0) = 0. Substituting Eq. (28) into Eq. (27) and using the Schwinger

formula Eq. (10), the Green’s function can be written as

Gα
++(x− y)

=

∫

DψDψ̄ψR(x)ψ
†
R(y)e

i2πρ0+(x1−y1)(1+α
2
)e

∫
d2zψ̄iγµ(∂µ+iAµ)ψ

∫

DψDψ̄e
∫
d2zψ̄iγµ∂µψ

=
δab
2π

1

(x0 − y0)− i(x1 − y1)
eiΘ

1
x,y [A]eSeff [A], (29)

where the auxilliary field Aµ defined by A0(z) =
πα
2
∂0Qx,y(z) and A1(z) = iπα

2
∂0Qx,y(z).

The functionals Θ1
x,y[A] and Seff [A] are given in Eq. (11) and Eq. (12), respectively,

which can be calculated straightforwardly. Thus we obtain the Green’s function for the

right-handed anyon:

Gα
++(x− y) =

1

2π

ei2πρ
0
+(1+α/2)(x1−y1)

[x0 − y0 − i(x1 − y1)](1+α/2)2
. (30)

This result shows that the Fermi momentum kf is shifted from 2πρ+0 to 2πρ+0 (1 +

α/2) by the Chern-Simons coupling. Since the chiral fermion has only one Fermi

wavevector kf , its Fermi area is in fact linearly dependent on kf . Therefore, the shift of

kf actually implies a non-trivial exclusion statistics. Notice that the Green’s function has

a power-law dependence on the anti-holomorphic coordinates x0 − ix1 with a fractional

exponent (1+α/2)2 which also reflects the braiding effect. The present system is in fact

a chiral “Luttinger” anyon liquid.

There is also an essential difference between the chiral and Dirac anyon gases,

namely, the braid phase factor arising from an oriented exchange of the coordinates x and

y for the chiral anyon depends quadratically on the Chern-Simons coupling parameters

α. This spoils the periodicity of the braid statistics on α seen in the Dirac anyon

system, as discussed in the previous sections. This can be attributed to the lack of

the backscattering channel for chiral anyons. Indeed, the existence of two Fermi points

is crucial for the Dirac fermions to form different sectors with multiple particle-hole

excitations carrying a current of 2nkf(n ∈ Z), and the shift of α by 2n simply transfers

one sector to the other with the same braid statistics. Furthermore, in a conventional

Luttinger liquid, a Galileian boost can be used to pump one particle from one Fermi

point to the other, and to increase the total current by 2kf [13] without changing the

total particle numbers. However, for a single branch of chiral fermion with one Fermi

point, such a boost not only increases the total current but also changes the total particle

number as it is connected with a bulk particle reservior. Thus, with the particle number

constraint, it is simply not allowed to make such a boost, and one can not expect the

existence of different sectors.
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We would like to stress that the present chiral “Luttinger” anyon liquid is induced

by pure Chern-Simons coupling, unlike the edge mode in the fractional quantum Hall

system where the chiral Luttinger liquid is due to the interaction of electrons in the

lowest Landau level.

Remark : One may also implement the braid and exclusion statistics in an analogous

way to fractional quantum Hall systems, and it turns out α = λ−1. Therefore, the

relation between α and g in the anomalous systems is not universal, depending on how

the braid statistics is implemented. Here, we just sketch such a different implementation,

and more details with a general physical interpretation will be discussed elsewhere.

With the same methods given in Sec. 3, one can easily prove that a Luttinger fermion

with Haldane parameter λ coupled chirally to a gauge field has an effective action

given by λSc±eff (Aµ). Then one can cancel its anomaly by adding a Chern-Simons

action for the gauge field in the half-space-time with a braid parameter matching with

λ. One can then construct a chiral field by attaching to, e.g., ψR(x) a phase string:

ψR(x) exp[−i(λ
−1 − 1)π

∫∞

x1
dy1j0(x0, y1)]. One finds that this field is indeed chiral with

both braid and fractional exclusion statistics.

5. Mutual statistics of multiple species of chiral anyons

In this section we consider the mutual statistics among multiple chiral anyon species.

Multiple chiral edge modes may exist in the integer quantum Hall insulators with Hall

conductance σh ≥ 2. It may also occur in the fractional quantum Hall systems in the

hierarchical theory, where the quantum state at some filling is not of the simple Laughlin

type, leading to many branches of edge excitations[42, 43, 44].

We consider the following action of right-handed fermions with Nf flavors, each of

which couples with the same statistical gauge field with different statistical charges qa,

Sc+Nf
[{ψa, ψ̄a}|A] =

Nf
∑

a=1

∫

d2x

[

ψ̄aiγ
µ

(

∂µ + iqa
A+
µ

2

)

ψa − iqaA
+
0 ρ

0
a+

]

. (31)

As explained in Sec. 4, for each right-handed fermion, we need to add the fermion with

opposite chirality which, however, does not couple to the gauge field and serves as an

auxilliary field to give a well-defined fermionic integration measure. The anomalous

effective action of statistical gauge field is simply νtS
c+
eff [Aµ] with νt ≡

∑Nf

a=1 q
2
a(here

we temporarily ignore the density term purposely). To cancel the gauge anomaly of

the chiral edge modes and make the whole theory gauge invariant, we need a bulk

Chern-Simons term in the upper half plane with x2 > 0

S+
bulk[A] =

iνt
4π

∫

d3xθ(x2)ǫµνλAµ∂νAλ − i

Nf
∑

a=1

∫

d3xθ(x2)qaρ
0
B,aA0, (32)

where ρ0B,a is the bulk density of the a-flavor fermion w.r.t. the non-interacting vacuum.

Next, we add the Chern-Simons action of Eq. (2) in the whole space to implement
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the braid statistics. Integrating out A0 one finds a simple extension of Eq. (25),

iδ(x2)

Nf
∑

a=1

qa[j
+
a (x) + iρ0a,+]−

N
∑

a=1

θ(x2)qaρ
0
B,a

=
F12

2πα
−
νtF12

2π
θ(x2) +

νt
4π
δ(x2)A1(x, x

2), (33)

where j+a (x) ≡ (j0a + ij1a)/2 is the particle density of right-handed fermions and

the charge density is qaj
+
a . For the bulk region, this constraint has a simple form

F12 = 2πα(1 + ανt)
∑Nf

a=1 qaρ
0
B,a. As we proved in Ref.[23], the bulk anyon also obeys

the mutual fractional exclusion statistics induced by braiding particles, and the particle

density is shifted to a α-dependent value ρB,a(α) for each flavor. The corresponding

total flux density is then 2πα
∑Nf

a=1 qaρB,a(α), therefore we obtain a relation between

ρ0B,a and ρB,a(α) as following

Nf
∑

a=1

qaρ
0
B,a = (1− ανt)

Nf
∑

a=1

qaρB,a(α). (34)

This result can also be derived using our previous results on the mutual statistics in

two-dimensional Hall insulator consisting of multiple species of anyons, where we proved

the parameters gab of mutual exclusion satisfy gab = 2πσh,aαqaqb for all flavors in the

presence of Chern-Simons coupling(see the appendix of Ref. [23]).

We now turn to the mutual statistics of one-dimensional chiral anyons. The solution

of Eq. (33) is similar to that of Eq. (28), and in the gauge A2 = 0 we have:

A1(x, x
2) = iπαsgn(x2)

Nf
∑

a=1

qa[j
+
a (x) + ρ0a+], (35)

where we omit the bulk density term, since it is not necessary for the discussion on the

mutual statistics of the edge anyons. Following the same procedure given for the single

chiral fermion, it is straightforward to derive the Green’s function of the chiral fermions

Gα,+
ab (x− y)

=
δab

(Z0f )Nf

∫

DψDψ̄ei2πρ
+
a (x1−y1)+iπαqa(x1−y1)

∑Nf
c=1 qcρ

0
c+

× ψaR(x)ψ
†
aR(y)e

∑Nf
c=1

∫
d2zψ̄ciγµ(∂µ+iqcAµ)ψc

=
δab
2π

ei2π(ρ
+
a +αqa

2

∑Nf
c=1 qcρ

0
c+)(x1−y1)

[x0 − y0 − i(x1 − y1)]1+αq
2
a+

q2a
4

∑Nf
c=1 q

2
cα

2
, (36)

where A0 = παqa∂0Qx,y(z)/2 and A1 = iπαqa∂0Qx,y(z)/2 coming from the the solution

of the constraint Eq. (35).

There is no correlation between anyons with different flavors. However the Green’s

function gets modifications from other flavors of chiral fermions: (1) The anomalous

exponent of the Green’s function Gα,+
aa (x−y) for flavor a receives the contributions from

other chiral fermions, which is
∑

c 6=a(qaqcα/2)
2. This reflects the interaction induced by

the flux binding between different flavors of chiral fermions. (2) The Fermi momentum
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kaf , which reflects the occupation status of flavor a particle in the momentum space, is

also modified by other chiral fermions. The change of the Fermi momentum kaf w.r.t.

ρ+b can be calculated straightforwardly:

∂kaf
∂ρ+b

= 2πδab + παqaqb. (37)

where the second term unambiguously shows the mutual exclusion statistics consistent

with our previous results for the two-dimensional Hall systems[23]. The present mutual

exclusion statistics is indeed induced only by the mutual exchange statistics, as we do

not add any interactions.

6. T-duality and Bosonization

In this section we review some standard formulas of one-dimensional bosonization in

the Euclidean path-integral formalism following Ref.[45], and we apply them to the one-

dimensional ”Luttinger” anyons given in Sec. 3 and chiral anyons in Sec. 4. Then, the

results given in the previous sections can be reproduced.

We introduce the zero-mass Gaussian measure in euclidean 1+1 spacetime with

mean zero and covariance (4πλ)(−∆)−1, where λ > 0. This measure is written formally

as
1

Z

∫

Dφe
1

8πλ

∫
d2x∂µφ(x)∂µφ(x), (38)

assuming the scalar field φ to vanish at infinity and Z is the partition function of free

boson. Denoting by 〈·〉λ the corresponding expectation value, the Gaussian measure can

be more rigorously defined by:

〈ei
∫
d2xφ(x)f(x)〉λ = e2πλ

∫
d2xd2yf(x)∆−1(x,y)f(y), (39)

if f is a test function whose Fourier transform vanishes at the origin, and

〈ei
∫
d2xφ(x)f(x)〉λ = 0 if f is real with non-vanishing Fourier transform at the origin. We

now introduce the two main composite fields we will use in the theory with expectation

value 〈·〉λ. The first is the vertex, which is just an imaginary exponential of the field φ

normal ordered, formally defined by : eiβφ(x) := eiβφ(x)(2π)β
2
e−2πλβ2∆−1(x,x), for β ∈ R.

The second one is the disorder field. Let us consider the vector potential V x
µ (y) of a

magnetic vortex of charge 1 at the point x. It satisfies ǫµν∂µV
x
ν (y) = δ(x−y) and locally

on R2\{x} ∼ C\{x} can be written as V x
µ (y) = ∂µ arg(x − y)/(2π). The expectation

value of a product of N disorder fields D(xj, ζj), ζj ∈ R, j = 1...N is given, up to a UV

renormalization, by
〈

N
∏

j=1

D(xj , ζj)

〉

λ

=

∫

Dφe−
1

8πλ

∫
d2z(∂µφ+

∑N
j=1 ζ

jV xj

µ )2(z)

∫

Dφe−
1

8πλ

∫
d2z(∂µφ)2(z)

. (40)

If both vertex and disorder fields are present one gets
〈

N
∏

j=1

D(xj , ζj)
M
∏

ℓ=1

: eiβ
ℓφ(yℓ) :

〉

λ
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=

∫

Dφe−
1

8πλ

∫
d2z(∂µφ+

∑N
j=1 ζ

jV xj

µ )2(z)∏M
ℓ=1 e

iβℓ[φ(yℓ)+
∑N

j=1 ζ
j arg(xj−yℓ)]

∫

Dφe−
1

8πλ

∫
d2z(∂µφ)2(z)

(41)

Performing the integration over φ one evaluates the version of Eq. (41) relevant for the

bosonization of anyons’ two-point function obtaining:

〈D(x, ζ) : eiβφ(x) : D(y,−ζ) : e−iβφ(y) :〉λ = e−( ζ
2

2λ
+2λβ2) ln |x−y|e−i2ζβ arg(x−y) (42)

Next we show the bosonization as a special version of T-duality(see e.g. Ref.[46])

in one dimension, as has been realized in Ref.[47] and independently in Refs.[48, 49].

The basic idea underlying T-duality is the following: Consider a quantum field theory

expressed in euclidean formalism in terms of charged fields χ, χ∗ whose action S(χ, χ∗)

is invariant under an abelian (e.g. U(1)) global gauge transformation

χ(x) → eiξχ(x), χ∗(x) → e−iξχ∗(x).

Then, we promote the global gauge invariance to a local gauge invariance by introducing

a minimal coupling between χ, χ∗ and a U(1)-gauge field Cµ. We then integrate over

Cµ with the zero-field constraint ǫµν∂µCν = 0, so that the original theory is recovered.

The Lagrange-multiplier field enforcing the constraint for Cµ is the boson field of the

corresponding T-dual theory. Bosonization is just T-duality in case when χ is the

fermion field ψ. Let us show this procedure for the partition function of ”Luttinger”

anyons with formal calculation. Their partition function Eq. (15) can be rewritten as:

ZT =

∫

DAeScs[A]δ(∂νAν)

∫

DCδ(ǫµν∂µCν)δ(∂
νCν)

∫

DBe
∫
d2z 1

2κπ
BµBµ

∫

DψDψ̄eSf [ψ,ψ̄|A+B+C], (43)

where δ(∂νCν) and δ(∂
νAν) are just possible gauge-fixing for Cµ and Aµ, respectively.

For Dirac fermion, Sf is given by Eq. (1), and one can integrate the fermion fields and

H.S. field firstly leading to

ZT =

∫

DAeScs[A]δ(∂νAν)

∫

DCδ(ǫµν∂µCν)δ(∂
νCν)

× e
1

1+κ
{Seff [A+C]−i

∫
d2z(A0+C0)ρ0}

with Seff [A] given in Eq. (12). We then represent the gauge-invariant constraint on C

as:

δ(ǫµν∂µCν) =

∫

Dφe−i
∫
d2z 1

2π
φ(z)ǫµν∂µCν(z), (44)

where the Lagrange-multiplier φ is a real scalar field and the factor 2π has been

introduced for later convenience. Changing variable from Cµ + Aµ → Cµ and

subsequently integrating over C, one obtains

ZT =

∫

DAeScs(A)δ(∂νAν)

∫

Dφe
∫
d2zLB[φ,A],

LB[φ,A] =
1 + κ

8π
∂µφ∂

µφ+
ρ0

2
ǫ0ν∂

νφ+
i

2π
ǫµν∂µφAν (45)



Fractional exclusion and braid statistics in one dimension 16

For A = 0, one recognizes the bosonized Luttinger liquid action with λ = 1/(1+κ), plus

a density term. To keep the calculation well defined, we provide the particle density

with a support in a finite system of length L, and eventually take the thermodynamic

limit. Then, one can shift φ(x) → φ(x)− 2πλ
∫ x1

−∞
dz1ρ0(z1), and the boson Lagrangian

acquires a standard Gaussian form given in Eq. (38)

LB[φ,A] →
1

8πλ
∂µφ∂

µφ−
πλ(ρ0)2

2
,

where the additional quadratic density term reminds us of the charge excitation given

in Haldane’s Luttinger liquid theory[42]. When calculating the correlation function of

vertex operators, the previous shift contributes an additional phase factor given below,
∫

Dφeiβ[φ(x)−φ(y)]e
∫
d2zL[φ,0]

∫

Dφe
∫
d2zL[φ,0]

= e−i2πλβρ
0(x1−y1)〈: eiβφ(x) :: e−iβφ(y) :〉λ (46)

which is useful to identify the exclusion statistics via the change of “Fermi” area as

shown in previous sections, where this ρ0-related phase factor is calculated alternatively

in the fermion formalism.

In a similar way, one can obtain the bosonized anyon two-point function with the

identifications:

ψa(x) → D(x, 1) : ei
[(−1)a+α]

2
φ(x) :,

ψ†
a(x) → D(x,−1) : e−i

[(−1)a+α]
2

φ(x) : . (47)

In the following, we sketch how to derive via duality the bosonization formulas

Eq. (47) in the simplest case with κ = 0, and the general case can be easily handled

by inserting the B fields following the procedure outlined in Sec. 3(for more details see

Ref.[48]). First, for α = 0, the Green’s function of non-interacting fermion fields can be

written in terms of auxilliary field Cµ and boson field φ,
〈

ψa(x)ψ
†
a(y)

〉

=

∫

DφDCδ(∂νCν)e
Seff [C]−i

∫
d2z 1

2π
φǫµν∂µCνψa(x)ψ

†
b(y)

∫

DφDCδ(∂νCν)e
Seff [C]−

∫
d2z i

2π
φǫµν∂µCν

=
e−i(−1)a arg(x−y)

|x− y|

∫

DφDCδ(∂νCν)e
iΘa

x,y[C]+Seff [C]−
∫
d2z i

2π
φǫµν∂µCν

∫

DφDCδ(∂νCν)e
Seff [C]−

∫
d2z i

2π
φǫµν∂µCν

= e−i(−1)a arg(x−y)−π∆−1(x−y)

×

∫

Dφe−
∫
d2z 1

8π
(∂µφ)2(z) : ei

(−1)a

2
φ(x) :: e−i

(−1)a

2
φ(y) :

∫

Dφe−
∫
d2z 1

8π
(∂µφ)2(z)

= 〈D(x, 1) : ei
(−1)a

2
φ(x) : D(y,−1) : e−i

(−1)a

2
φ(y) :〉, (48)

where we used Schwinger’s formula Eq. (10) and we set ρ0 = 0 since it is irrelvant for the

present purpose. For the anyon field, we need to attach the gauge string. Using Eq. (4)

and j0(x) = −i∂1φ/(2π) in the bosonization form, one can easily justify Eq. (47).

The bosonization for the chiral fermion based on T-duality is similar. Comparing

the Lagrangian for the chiral fermion given in Eq. (20) with that for the Dirac fermion,
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we find the bosonized form for chiral fermion which is obtained by replacing Aµ in

Eq. (45) with A±
µ /2,

L±
B =

1

8π
∂µφ∂

µφ+
ρ0±
2
ǫ0ν∂νφ+

i

4π
ǫµν∂µφA

±
ν +

c

4π
AµA

µ, (49)

where the local quadratic term of Aµ is added again due to the finite renormalization

ambiguity. The boson Lagrangian L±
B can reproduce the same effective action S±

eff [A]

as the Lagrangian of chiral fermion, though it is not the minimal version. To get the

minimal form of boson Lagrangian L±
B, one can simply put the chiral constraint on

the fermion current, then it is easy to reproduce in this T-dual formalism the chiral

bosonization of Refs.[50, 51].

7. Conclusions and Remarks

As a summary, we adopt the Chern-Simons gauge theory with suitable dimensional

reduction to clarify the relation between the braid and fractional exclusion statistics in

one dimension. The same framework has also been used in our previous study on the

two-dimensional case[23], thus, completing a systematic study on the two aspects of the

fractional statistics in low dimensions d ≤ 2.

For Dirac fermions, the flux-binding does not necessarily induce the nontrivial

fractional exclusion statistics, which is also consistent with the result given in Ref.[37].

Here we would like to mention that, for the exactly solvable Calogero-Sutherland

model, which exhibits explicitly the fractional exclusion statistics as derived from its

energy spectrum, one can actually assign arbitrary braid statistics to its manybody

wavefunction without changing the energy spectrum due to the impenetrable x−2

interaction. Indeed, the fermion and boson solutions of this model were given in Ref.[20],

and another “natural” anyonic Jastrow-Laughlin type wavefunction together with the

corresponding correlation functions was constructed in Refs.[31, 32]. Therefore, in this

model, the two statistics are not necessarily connected.

For chiral fermions, however, binding flux to the fermion field can induce a well-

defined fractional exclusion statistics for both single and multiple species of particles.

Since the chiral fermion is simply a boundary system for a Hall insulator, and this result

is consistent with our study on the two dimensional cases[23] where we proved the braid

statistics together with Hall response can result in a nontrivial exclusion statistics.

Both the one and two dimensional results suggest that the time-reversal breaking in

the original system before coupling to a Chern-Simons term is somehow necessary for

connecting the braid and fractional exclusion statistics for dimensions d ≤ 2.

Since the fractional statistics are natually related to interactions, we hope our study

may shed light on the application of fractional statistics to strongly correlated condensed

matter system within the framework of Chern-Simons gauge theroy. In particular, using

the tomographic decomposition[52] one can analyze the long-range behaviour(scaling

limit) of two-dimensional fermionic systems in terms of one-dimensional systems labelled

by the rays of the two-dimensional Fermi surface. As an application of the formalism
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developed here, we are presently considering the two-dimensional t− J model, relevant

for the high Tc cuprates.
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