946 research outputs found

    Observation and assessment of model retrievals of surface exchange components over a row canopy using directional thermal data

    Get PDF
    Land surface temperature is an essential climate variable that can serve as a proxy for detecting water deficiencies in croplands and wooded areas. Its measurement can however be influenced by anisotropic properties of surface targets leading to occurrence of directional effects on the signal. This may lead to an incorrect interpretation of thermal measurements. In this study, we perform model assessments and check the influence of thermal radiation directionality using data over a vineyard. To derive the overall directional surface temperatures, elemental values measured by individual cameras were aggregated according to the respective cover fractions/weights in viewing direction. Aggregated temperatures from the turbid model were compared to corresponding temperatures simulated by the 3D DART radiative transfer model. The reconstructed temperatures were then used in surface-energy-balance (SEB) simulations to assess the impact of the Sun-target-sensor geometry on retrievals. Here, the pseudo-isotropic Soil-Plant-Atmosphere-Remote-Sensing-of-Evapotranspiration (SPARSE) dual-source model together with the non-isotropic version (SPARSE4), were used. Both schemes were able to retrieve overall fluxes satisfactorily, confirming a previous study. However, the sensitivity (of flux and component temperature estimates) of the schemes to viewing direction was tested for the first time using reconstructed sets of directional thermal data to force the models. Degradation (relative to nadir) in flux retrieval cross-row was observed, with better consistency along rows. Overall, it was nevertheless shown that SPARSE4 is less influenced by the viewing direction of the temperature than SPARSE, particularly for strongly off-nadir viewing. Some directional/asymmetrical artefacts are however not well reproduced by the simple Radiative Transfer Methods (RTM), which can then manifest in and influence the subsequent thermal-infrared-driven SEB modelling.This work was supported by the ALTOS project (PRIMA 2018 - Section 2), with grants provided by ANR via the agreement n°ANR-18-PRIM-0011-02 as well as the CNES/TOSCA program for the TRISHNA project. First author acknowledges the financial support of his PhD from CNES and Région Occitanie. The field experiments were carried out in the context of the HiLiaise and ESA WineEO projects. Joan Boldu (proprietor) and David Tous (SafSampling) are also acknowledged for allowing/providing access to the site and other site related data. Nicolas Lauret’s help with preparation of the DART mock-ups is appreciated.info:eu-repo/semantics/publishedVersio

    Influence of myocardial oxygen demand on the coronary vascular response to arterial blood gas changes in humans

    Get PDF
    It remains unclear if the human coronary vasculature is inherently sensitive to changes in arterial PO2 and PCO2 or if coronary vascular responses are the result of concomitant increases in myocardial O2 consumption/demand (MVO2). We hypothesized that the coronary vascular response to PO2 and PCO2 would be attenuated in healthy men when MVO2 was attenuated with β1-adrenergic receptor blockade. Healthy men (n=11; age: 25 {plus minus} 1 years) received intravenous esmolol (β1-adrenergic receptor antagonist) or volume-matched saline in a double-blind, randomized, crossover study, and were exposed to poikilocapnic hypoxia, isocapnic hypoxia, and hypercapnic hypoxia. Measurements made at baseline and following 5-min of steady state at each gas manipulation included left anterior descending coronary blood velocity (LADV; Doppler echocardiography), heart rate and arterial blood pressure. LADV values at the end of each hypoxic condition were compared between esmolol and placebo. Rate pressure product (RPP) and left-ventricular mechanical energy (MELV) were calculated as indices of MVO2. All gas manipulations augmented RPP, MELV, and LADV but only RPP and MELV were attenuated (4-18%) following β1-adrenergic receptor blockade (P<0.05). Despite attenuated RPP and MELV responses, β1-adrenergic receptor blockade did not attenuate the mean LADV vasodilatory response when compared to placebo during poikilocapnic hypoxia (29.4{plus minus}2.2 vs. 27.3{plus minus}1.6 cm/s) and isocapnic hypoxia (29.5{plus minus}1.5 vs. 30.3{plus minus}2.2 cm/s). Hypercapnic hypoxia elicited a feed-forward coronary dilation that was blocked by β1-adrenergic receptor blockade. These results indicate a direct influence of arterial PO2 on coronary vascular regulation that is independent of MVO2

    Orbital-based Scenario for Magnetic Structure of Neptunium Compounds

    Full text link
    In order to understand a crucial role of orbital degree of freedom in the magnetic structure of recently synthesized neptunium compounds NpTGa_5 (T=Fe, Co, and Ni), we propose to discuss the magnetic phase of an effective two-orbital model, which has been constructed based on a j-j coupling scheme to explain the magnetic structure of uranium compounds UTGa_5. By analyzing the model with the use of numerical technique such as exact diagonalization, we obtain the phase diagram including several kinds of magnetic states. An orbital-based scenario is discussed to understand the change in the magnetic structure among C-, A-, and G-type antiferromagnetic phases, experimentally observed in NpFeGa_5, NpCoGa_5, and NpNiGa_5.Comment: 18 pages, 8 figures, to appear in New Journal of Physic

    Global Initiative for Asthma (GINA) strategy 2021 - executive summary and rationale for key changes.

    Get PDF
    The Global Initiative for Asthma (GINA) Strategy Report provides clinicians with an annually updated evidence-based strategy for asthma management and prevention, which can be adapted for local circumstances (e.g., medication availability). This article summarizes key recommendations from GINA 2021, and the evidence underpinning recent changes. GINA recommends that asthma in adults and adolescents should not be treated solely with short-acting beta2-agonist (SABA), because of the risks of SABA-only treatment and SABA overuse, and evidence for benefit of inhaled corticosteroids (ICS). Large trials show that as-needed combination ICS-formoterol reduces severe exacerbations by ≥60% in mild asthma compared with SABA alone, with similar exacerbation, symptom, lung function and inflammatory outcomes as daily ICS plus as-needed SABA. Key changes in GINA 2021 include division of the treatment figure for adults/adolescents into two tracks. Track 1 (preferred) has low-dose ICS-formoterol as the reliever at all steps: as-needed only in Steps 1-2 (mild asthma), and with daily maintenance ICS formoterol (maintenance-and-reliever therapy, MART) in Steps 3-5. Track 2 (alternative) has as-needed SABA across all steps, plus regular ICS (Step 2) or ICS-long-acting beta2-agonist (LABA) (Steps 3-5). For adults with moderate-to-severe asthma, GINA makes additional recommendations in Step 5 for add-on long-acting muscarinic antagonists and azithromycin, with add-on biologic therapies for severe asthma. For children 6-11 years, new treatment options are added at Steps 3-4. Across all age-groups and levels of severity, regular personalized assessment, treatment of modifiable risk factors, self-management education, skills training, appropriate medication adjustment and review remain essential to optimize asthma outcomes

    A qualitative examination of inappropriate hospital admissions and lengths of stay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research has shown that a number of patients, with a variety of diagnoses, are admitted to hospital when it is not essential and can remain in hospital unnecessarily. To date, research in this area has been primarily quantitative. The purpose of this study was to explore the perceived causes of inappropriate or prolonged lengths of stay and focuses on a specific population (i.e., patients with long term neurological conditions). We also wanted to identify interventions which might avoid admission or expedite discharge as periods of hospitalisation pose particular risks for this group.</p> <p>Methods</p> <p>Two focus groups were conducted with a convenience sample of eight primary and secondary care clinicians working in the Derbyshire area. Data were analysed using a thematic content approach.</p> <p>Results</p> <p>The participants identified a number of key causes of inappropriate admissions and lengths of stay, including: the limited capacity of health and social care resources; poor communication between primary and secondary care clinicians and the cautiousness of clinicians who manage patients in community settings. The participants also suggested a number of strategies that may prevent inappropriate admissions or reduce length of stay (LoS), including: the introduction of new sub-acute care facilities; the introduction of auxiliary nurses to support specialist nursing staff and patient held summaries of specialist consultations.</p> <p>Conclusion</p> <p>Clinicians in both the secondary and primary care sectors acknowledged that some admissions were unnecessary and some patients remain in hospital for a prolonged period. These events were attributed to problems with the current capacity or structuring of services. It was noted, for example, that there is a shortage of appropriate therapeutic services and that the distribution of beds between community and sub-acute care should be reviewed.</p

    Comparing the effects of two inhaled glucocorticoids on allergen-induced bronchoconstriction and markers of systemic effects, a randomised cross-over double-blind study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhaled glucocorticoids are efficient in protecting against asthma exacerbations, but methods to compare their efficacy vs systemic effects have only been attempted in larger multi-centre studies. The aim of the current study was therefore to directly compare the effects of two separate inhaled glucocorticoids, mometasone and budesonide, to compare the effects on the early and late asthmatic responses to inhaled allergen in patients with mild allergic asthma, and sputum eosinophils, and to relate the clinical positive effects to any systemic effects observed.</p> <p>Methods</p> <p>Twelve patients with documented early and late asthmatic responses (EAR and LAR) to inhaled allergen at a screening visit were randomized in a double-blind fashion to treatment with mometasone (200 μg × 2 or 400 μg × 2), budesonide (400 μg × 2) or placebo in a double-blind crossover fashion for a period of seven days. Challenge with the total allergen dose causing both an EAR and LAR was given on the last day of treatment taken in the morning. Lung function was assessed using FEV1, and systemic glucocorticoid activity was quantified using 24 h urinary cortisol.</p> <p>Results</p> <p>Mometasone and budesonide attenuate both EAR and LAR to allergen to a similar degree. No significant dose-related effects on the lung function parameters were observed. Both treatments reduced the relative amount of sputum eosinophils (%) after allergen. At the dose of 800 μg daily, mometasone reduced 24 h urinary cortisol by approximately 35%. Both drugs were well tolerated.</p> <p>Conclusions</p> <p>Mometasone and budesonide are equieffective in reducing early and late asthmatic responses induced by inhaled allergen challenge. Mometasone 800 μg given for seven days partially affects the HPA axis.</p
    corecore