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Abstract 1 

It remains unclear if the human coronary vasculature is inherently sensitive to changes in arterial 2 

PO2 and PCO2 or if coronary vascular responses are the result of concomitant increases in 3 

myocardial O2 consumption/demand (MVO2).  We hypothesized that the coronary vascular 4 

response to PO2 and PCO2 would be attenuated in healthy men when MVO2 was attenuated with 5 

1-adrenergic receptor blockade.  Healthy men (n=11; age: 25 ± 1 years) received intravenous 6 

esmolol (1-adrenergic receptor antagonist) or volume-matched saline in a double-blind, 7 

randomized, crossover study, and were exposed to poikilocapnic hypoxia, isocapnic hypoxia, 8 

and hypercapnic hypoxia.  Measurements made at baseline and following 5-min of steady state at 9 

each gas manipulation included left anterior descending coronary blood velocity (LADV; 10 

Doppler echocardiography), heart rate and arterial blood pressure.  LADV values at the end of 11 

each hypoxic condition were compared between esmolol and placebo.  Rate pressure product 12 

(RPP) and left-ventricular mechanical energy (MELV) were calculated as indices of MVO2.  All 13 

gas manipulations augmented RPP, MELV, and LADV but only RPP and MELV were attenuated 14 

(4 – 18%) following 1-adrenergic receptor blockade (P<0.05).  Despite attenuated RPP and 15 

MELV responses, 1-adrenergic receptor blockade did not attenuate the mean LADV vasodilatory 16 

response when compared to placebo during poikilocapnic hypoxia (29.4 ± 2.2 vs. 27.3 ± 1.6 17 

cm/s) and isocapnic hypoxia (29.5 ± 1.5 vs. 30.3 ± 2.2 cm/s).  Hypercapnic hypoxia elicited a 18 

feed-forward coronary dilation that was blocked by 1-adrenergic receptor blockade.  These 19 

results indicate a direct influence of arterial PO2 on coronary vascular regulation that is 20 

independent of MVO2.  21 
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New & Noteworthy 22 

In humans, arterial hypoxemia led to an increase in epicardial coronary artery blood velocity.  β1-23 

adrenergic receptor blockade did not diminish the hypoxemic coronary response despite reduced 24 

myocardial O2 demand.  These data indicate hypoxemia can regulate coronary blood flow 25 

independent of myocardial O2 consumption.  A plateau in the LADVmean-RPP relationship 26 

suggested a β1-adrenergic receptor mediated, feed-forward epicardial coronary artery dilation.  In 27 

addition, we observed a synergistic effect of PO2 and PCO2 during hypercapnic hypoxia. 28 

 29 

Keywords 30 

Hypoxia, hypercapnia, coronary blood flow, β1-adrenergic blockade, myocardial oxygen demand   31 
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Introduction 32 

The limited anaerobic capacity of the myocardium and near maximal O2 extraction from the 33 

coronary circulation at rest requires a close match of myocardial O2 demand and coronary blood 34 

flow (14).  Myocardial O2 consumption/demand is closely related to myocardial contractile force 35 

and heart rate.  Physiological increases in myocardial O2 demand require coronary vasodilation 36 

to increase coronary blood flow thereby maintaining O2 delivery and cardiac function.  37 

Mechanisms responsible for matching coronary blood flow to myocardial O2 demand have been 38 

extensively reviewed and include vascular smooth muscle responses, endothelial release of 39 

vasoactive substances, adrenergic stimulation and metabolic feedback control to changes in 40 

arterial O2 and CO2 tensions (41).  However, in healthy humans, separating the direct vascular 41 

effects of vasoactive stimuli from the indirect effects on myocardial O2 demand is challenging 42 

due to the redundant and highly integrated mechanisms involved. 43 

 Exposure to acute systemic hypoxia or hypercapnia leads to increased sympathetic nerve 44 

activity (SNA) and associated catecholamine release from sympathetic nerve terminals and 45 

adrenal medulla (47).  Increased catecholamines stimulate β-adrenergic receptors within the 46 

myocardium leading to positive chronotropic and inotropic responses that elevate heart rate (HR) 47 

and myocardial contractility (7).  In addition, increases in total systemic vascular resistance 48 

elevates cardiac afterload and in combination with positive chronotropy and inotropy increases 49 

myocardial O2 demand and must therefore be accompanied by an increase in O2 delivery via 50 

coronary blood flow to maintain cardiac function.  This coronary blood flow response is thought 51 

to be regulated by feed-forward coronary vascular β-adrenergic receptor activation and local 52 

metabolic feedback control of the coronary vasculature (29).  These mechanisms facilitate an 53 



H-00689-2017 – R2 

 

 5 

indirect influence of increased SNA on coronary blood flow regulation making it difficult to 54 

establish any direct influences of independent physiological stimuli. 55 

 The arterial partial pressure of O2 (PaO2) and CO2 (PaCO2) are postulated to have both 56 

direct and indirect effects on coronary vascular tone in both animals (1, 8, 9, 19, 21, 29, 38) and 57 

humans (6, 16, 31, 44, 46, 48).  Cardiomyocyte hypoxia exposure causes the release of 58 

vasoactive metabolites, including adenosine and nitric oxide, that relax vascular smooth muscle 59 

and dilate the coronary vasculature (11, 35).  Studies in humans (4, 6, 31) and animals (29) 60 

consistently show a dose-response relationship between coronary blood flow and reductions in 61 

arterial PO2.  When the concomitant increases in myocardial workload are statistically 62 

controlled, coronary blood flow remains increased in response to hypoxemia (4).  Similar to the 63 

coronary hypoxic response, hypercapnia leads to increases in coronary blood flow in both 64 

animals (8) and humans (44, 48).  Boulet et al. (6) recently reported that the coronary blood flow 65 

response to manipulations in arterial PO2 and PCO2 are equally attributable to direct vascular 66 

effects and indirect effects associated with increases in myocardial O2 demand.  Interestingly, 67 

when hypoxia and hypercapnia are combined, a synergistic influence on coronary blood flow is 68 

present in a closed-chest animal model (9).  In humans, it remains to be determined if 69 

manipulation of myocardial O2 demand influences the coronary vascular response to hypoxemia 70 

with combined manipulations in arterial PCO2. 71 

The purpose of this investigation was to determine the influence of myocardial O2 72 

demand on the coronary vascular response to acute alterations in combined arterial PO2 and 73 

PCO2 stimuli in healthy humans.  Using esmolol, a fast acting β1-adrenergic receptor antagonist, 74 

to minimize myocardial O2 requirements by reducing HR and myocardial contractility (7), we 75 

hypothesized that the coronary blood velocity response to end-tidal gas manipulations would be 76 
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attenuated when myocardial O2 demand was reduced.  In contrast to our hypothesis, the coronary 77 

vasodilator response to hypoxemia was conserved during blockade of β1-adrenergic receptors.  78 
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Methods 79 

Ethical Approval 80 

The protocol for this study was approved by the Clinical Research Ethics Board at the University 81 

of British Columbia and conformed to Canada’s Tri-Council Policy Statement for the ethical 82 

conduct for research involving humans as well as the Declaration of Helsinki. All participants 83 

provided written, informed consent prior to experimentation.  84 

 85 

Participants 86 

Eleven healthy males with no history of cardiovascular or pulmonary disease participated in this 87 

study.  Participants completed a questionnaire to screen for previous cardiovascular or 88 

pulmonary disease and to ensure they met inclusion criteria.  Participants were excluded if they 89 

were hypertensive (systolic blood pressure > 140 mmHg; diastolic blood pressure > 90 mmHg), 90 

obese (BMI > 30 kg/m2), or if the blood velocity from the left anterior descending coronary 91 

artery could not be sufficiently measured by transthoracic Doppler ultrasound.  Pulmonary 92 

function was assessed by spirometry according to recommended guidelines (28) and included 93 

measurement of the forced expiratory volume in 1s (FEV1) to forced vital capacity (FVC) ratio 94 

(FEV1/FVC).  Participants who did not achieve a FEV1/FVC ratio >75% of predicted were 95 

excluded from the experiment.  Participants refrained from exercise, alcohol and caffeine for 24 96 

hours prior to experimentation.  All participants provided written, informed consent prior to 97 

experimentation.  All experiments were conducted in Kelowna, BC, Canada at an elevation of 98 

344m.  99 

 100 

Experimental Design 101 
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Experimental Protocol 102 

In a double blind, placebo controlled, randomized crossover design, participants received an 103 

intravenous infusion of (1) a cardiac specific β1-adrenergic receptor antagonist, esmolol 104 

(Brevibloc, Baxter Healthcare Corporation), or (2) volume matched 0.9% saline.  A minimum of 105 

45 minutes (5-biological half-lives of esmolol) separated drug and placebo experiments to ensure 106 

no carry-over effects (39).  Esmolol was initially infused as a 500 µg/kg bolus over 1 minute 107 

followed by a 150 µg/kg/min continuous maintenance infusion for the remainder of the 108 

experimental protocol.  Previously, a similar esmolol infusion protocol has been found to have a 109 

comparable effect as propranolol, a non-specific β-adrenergic receptor antagonist, in reducing 110 

heart rate (HR), mean arterial pressure (MAP) (32) and rate pressure product (RPP) (27) 111 

responses to exercise.  Following instrumentation, participants were instructed to lay supine in a 112 

left lateral decubitus position to allow for optimal echocardiographic windows.  The initial bolus 113 

was infused and following 5 minutes of maintenance infusion participants breathed room air 114 

through the mouthpiece for a minimum of 5 minutes.  Baseline echocardiographic measurements 115 

were acquired following 5 minutes of room air breathing.  A dynamic end-tidal forcing system 116 

was utilized to manipulate the partial pressure of end-tidal oxygen (PETO2) and carbon dioxide 117 

(PETCO2) to desired levels as previously described (42, 43).  Participants were not blinded to the 118 

desired end-tidal gas manipulations.  Following baseline measurements, participants were 119 

exposed to poikilocapnic (PETCO2 = uncontrolled), isocapnic (PETCO2 = baseline) and 120 

hypercapnic (PETCO2 = +5 mmHg from baseline) hypoxia (PETO2 = 45 mmHg) consecutively in 121 

the described order (figure 1A and B).  We have previously reported that the PETO2-to-PaO2 122 

gradient ranges between 5.9 ± 0.4 and 6.7 ± 0.7 mmHg while the PaCO2-to-PETCO2 gradient 123 

ranges between 0.2 ± 0.2 and -0.9 ± 0.3 mmHg during similar end-tidal gas manipulations (43).  124 
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Cardiovascular and respiratory measurements were collected continuously while 125 

echocardiographic measurements were collected following 5 minutes of steady state in each end-126 

tidal gas manipulation.  127 

 128 

Instrumentation and Cardiorespiratory Measurements 129 

Initially, a 25-gauge intravenous catheter was placed into the antecubital vein and connected to 130 

an infusion pump (ALARISTM PC Pump 8100, CareFusion, San Diego, CA, USA).  Participants 131 

were then instrumented with a lead II electrocardiogram connected to a bio amp (FE132, 132 

ADinstruments, Colorado Springs, CO, USA) to measure HR, a finger probe and pulse oximeter 133 

(7500FO, Nonin Medical Inc., Plymouth, MN, USA) to measure oxyhemoglobin saturation 134 

(SpO2), and a finger cuff to measure beat-by-beat blood pressure by finger pulse 135 

photoplethysmography (Finometer PRO; Finapress Medical Systems, Amsterdam, Netherlands).  136 

The blood pressure signal was calibrated to a reconstructed brachial artery waveform via return-137 

to-flow calibration prior to initiating the infusion at the start of each experimental condition (18).  138 

In addition, an automated brachial blood pressure monitor was placed on the upper left arm and 139 

used to verify the beat-by-beat blood pressure measurement (CARESCAPETM V1000 Vital Signs 140 

Monitor, GE, Fairfield, CT, USA).  Throughout the experimental protocol, participants breathed 141 

through a mouthpiece attached in series to a bacteriological filter, a pneumotachograph (HR 142 

800L, Hans Rudolph, Shawnee, KS, USA) with a differential pressure transducer (1110 series, 143 

Hans Rudolph) to measure respiratory flow and frequency, and a two-way non-rebreathing valve 144 

(2600 series, Hans Rudolph).  The pneumotachograph was calibrated prior to experiments with a 145 

3-liter syringe.  Respired gases were sampled at the mouth and analyzed by a gas analyzer 146 

(ML206, ADinstruments) to measure the PETO2 and PETCO2.  Prior to experiments, the gas 147 
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analyzer was calibrated with gases of known concentration.  Commercially available software 148 

(LabChart V7.1, ADinstruments) was used to collect respiratory and cardiovascular variables for 149 

offline analysis with a sampling frequency of 200 Hz. 150 

 151 

Echocardiographic measurements 152 

All echocardiographic images were collected by two experienced sonographers using a 153 

commercially available ultrasound machine (Vivid E9, GE) with a M5S 5 MHz ultrasound probe 154 

or a 3V 3D-array ultrasound transducer, and saved for offline analysis with commercially 155 

available software (EchoPAC v.13, GE).  The epicardial portion of the left anterior descending 156 

(LAD) coronary artery near the left ventricular apex was visualized as previously described to 157 

obtain mean LAD blood velocity (LADVmean) and maximum LAD blood velocity (LADVmax) 158 

during diastole (6, 25).  The measurement of LADVmean and LADVmax with echocardiography has 159 

previously been validated against invasive Doppler guide-wire measurements (30).  Left 160 

ventricular end-systolic (ESV) and end-diastolic (EDV) volumes were measured using a 161 

modified Simpson’s biplane method which allowed calculation of stroke volume (SV; EDV-162 

ESV) and ejection fraction (EF) (26).  Simpson’s biplane method has previously been validated 163 

for accurate and reproducible measurements of left ventricular volumes (26, 34).  Blood pressure 164 

and EF measurements were used to calculate an estimate of the left ventricular end-systolic 165 

elastance (Ees) and used as an index of myocardial contractility as previously described (6, 10).  166 

All echocardiographic measurements are reported as an average of 3 cardiac cycles.  167 

 168 

Myocardial O2 Demand Estimation 169 
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Two indices of myocardial O2 demand were calculated.  First, the minute mechanical energy of 170 

the left-ventricle (MELV) was estimated from the derived area bound by the Ees and a simplified 171 

pressure-volume loop as previously described (6).  Briefly, the total energy (PVA) was taken as 172 

the sum of stroke work and the elastic potential energy.  The PVA in mmHg was converted to 173 

joules (J) using a factor of 1.3 x 10-4 and multiplied by HR to give the MELV reported in J/min as 174 

previously described (6, 10).  The second index of myocardial O2 demand RPP, was calculated 175 

as the product of HR and beat-by-beat systolic blood pressure (SBP).  The measurement of RPP 176 

has been shown to correlate well with direct myocardial O2 demand measurements (22).  177 

 178 

Statistical Analysis 179 

Our primary outcome variable is the difference in LADVmean between placebo and esmolol in 180 

each hypoxic condition.  Our sample size was estimated based on previously published data from 181 

our laboratory (6) such that a difference in LADVmean of 2 cm/s between placebo and esmolol 182 

could be resolved with a pooled standard deviation of 1.9 cm/s and a power >0.85.  A two-by-183 

four repeated measures analysis of variance was used to compare cardiovascular, respiratory and 184 

echocardiographic measurements between drug condition (i.e. placebo or esmolol) and each end-185 

tidal gas manipulation (i.e. baseline, poikilocapnic, isocapnic, and hypercapnic hypoxia). When 186 

significant F-ratios were present, a Tukey’s HSD post-hoc test was applied to determine where 187 

statistical differences lay.  Additionally, a mixed effect linear model was constructed using 188 

LADVmean as the dependent variable, drug as a categorical predictor, and PETO2, PETCO2, and 189 

RPP as continuous predictors.  The model contained a random subject intercept to account for 190 

correlation between measurements.  Backwards elimination of non-significant effects was 191 

performed on the linear mixed effect model.  This process was repeated including MELV rather 192 
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than RPP as a continuous predictor.  The Pearson’s product-moment test was used to determine 193 

if a correlation existed between RPP and MELV.  Reported measurements represent mean ± SE. 194 

Statistical significance was set at P < 0.05 for all comparisons.  195 
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Results 196 

Participants  197 

Participants were all male and had a mean age of 25 ± 1 years, weight of 73 ± 3 kg, height of 177 198 

± 2 cm and a BMI of 23.2 ± 0.5 kg/m2.  Lung function was normal in all subjects with an average 199 

FVC of 110 ± 3% of predicted, FEV1 of 98 ± 3% of predicted and a FEV1/FVC ratio of 89 ± 2% 200 

of predicted. Randomization resulted in 6 participants receiving esmolol as the first infusion 201 

condition, and 5 participants receiving placebo as the first infusion.  Participants received a 202 

volume of 461 ± 16 ml of saline or esmolol over a period of 59 ± 2 min. 203 

 204 

Respiratory response 205 

Table 1 provides respiratory measurements during baseline and each end-tidal gas manipulation 206 

for placebo and β1-adrenergic receptor blockade.  Tidal volume and minute ventilation were 207 

similar to baseline during poikilocapnic hypoxia and increased during isocapnic and hypercapnic 208 

hypoxia.  Breathing frequency was increased significantly during hypercapnic hypoxia.  Figure 209 

1A and B provide 15-sec group mean (n=11) PETCO2 and PETO2 values during end-tidal gas 210 

manipulation with and without β1-adrenergic receptor blockade.  The hypoxic stimulus was 211 

similar between placebo and β1-adrenergic receptor blockade with PETO2 and SpO2 both being 212 

reduced from baseline and not different between poikilocapnic, isocapnic or hypercapnic 213 

hypoxia.  PETCO2 was also similar between placebo and β1-adrenergic receptor blockade, and 214 

was reduced from baseline during poikilocapnic hypoxia, consistent with baseline during 215 

isocapnic hypoxia and increased from baseline during hypercapnic hypoxia. 216 

 217 

Cardiovascular response 218 
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Table 2 outlines select cardiovascular measurements during baseline and each end-tidal gas 219 

manipulation with placebo and β1-adrenergic receptor blockade.  All end-tidal gas manipulations 220 

caused an increase in SBP from baseline during placebo, however, with β1-adrenergic receptor 221 

blockade only hypercapnic hypoxia increased SBP.  A significant interaction effect for SBP was 222 

identified; post-hoc analysis determined SBP was attenuated by β1-adrenergic receptor blockade 223 

during poikilocapnic (P = 0.04) and hypercapnic hypoxia (P < 0.01) but not isocapnic hypoxia (P 224 

= 0.06).  Diastolic blood pressure (DBP) and MAP were not influenced by poikilocapnic and 225 

isocapnic hypoxia but increased from baseline with hypercapnic hypoxia.  Both DBP and MAP 226 

were unaffected by β1-adrenergic receptor blockade.  Heart rate increased from baseline in 227 

response to all end-tidal gas manipulations (P < 0.01) and tended to be reduced by β1-adrenergic 228 

receptor blockade (P = 0.09).  Left ventricular EDV was similar between drug conditions (P = 229 

0.9) while ESV tended to be greater with β1-adrenergic receptor blockade (P = 0.09).  Isocapnic 230 

hypoxia reduced both EDV and ESV (P < 0.05), while hypercapnic hypoxia only reduced ESV 231 

(P < 0.01).  During placebo, Ees increased from baseline during all end-tidal gas manipulations 232 

and was attenuated by β1-adrenergic receptor blockade. 233 

 234 

Coronary vascular response 235 

The LADVmean and LADVmax responses to end-tidal gas manipulations with placebo infusion and 236 

β1-adrenergic receptor blockade are outlined in figure 2A and B.  During both placebo and β1-237 

adrenergic receptor blockade both LADVmean and LADVmax increased from baseline during 238 

exposure to all end-tidal gas manipulations.  No differences in LADVmean or LADVmax were 239 

observed between poikilocapnic, isocapnic or hypercapnic hypoxic conditions.  β1-adrenergic 240 

receptor blockade had no significant influence on the LADVmean and LADVmax responses amongst 241 
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all end-tidal gas manipulations.  The final mixed effect linear model for LADVmean included 242 

subject as a random effect (P < 0.001), and PETO2 (P < 0.001) and PETCO2 (P < 0.01) as fixed 243 

effects.  Both drug (P = 0.71) and RPP (P = 0.08) were non-significant predictors and excluded 244 

from the final model.  Similarly, when RPP was replaced by MELV, subject was included as a 245 

random effect (P < 0.001), and PETO2 (P < 0.002) and PETCO2 (P < 0.01) as fixed effects.  Both 246 

drug (P = 0.92) and MELV (P = 0.15) were non-significant predictors of the LADVmean response 247 

to hypoxemia.  However, if the relationship between LADVmean and RPP or MELV are considered 248 

regardless of end-tidal gases, then mixed effect linear modeling indicates that both RPP (P < 249 

0.001) and MELV (P < 0.001) are significant predictors of LADVmean.  Thus, the relationship 250 

between LADVmean and our indices of myocardial O2 demand are left-shifted by esmolol (RPP 251 

model: P < 0.05); MELV Model: P = 0.06; See Figure 3A & B) and suggests that LADVmean is 2.4 252 

± 1.0 cm/s greater during β1-adrenergic blockade compared with control (P = 0.03) at a 253 

standardized myocardial O2 demand. 254 

 255 

Myocardial O2 Demand 256 

Measurements of RPP and MELV were significantly correlated (r = 0.74, P < 0.01) with each 257 

other and their response to end-tidal gas manipulation during placebo and β1-adrenergic receptor 258 

blockade are presented in figure 2C and D.  All end-tidal gas manipulations caused RPP to 259 

increase from baseline during placebo and β1-adrenergic receptor blockade.  A significant 260 

interaction was identified and post-hoc analysis determined that β1-adrenergic receptor blockade 261 

attenuated the RPP response during hypercapnic hypoxia (P < 0.01) but not significantly during 262 

poikilocapnic (P = 0.11) or isocapnic hypoxia (P = 0.07).  All end-tidal gas manipulations caused 263 

an increase in MELV from baseline during both placebo and β1-adrenergic receptor blockade.  264 
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Hypercapnic hypoxia caused a further increase in MELV compared to poikilocapnic (P < 0.01) 265 

and isocapnic hypoxia (P < 0.01).  During β1-adrenergic receptor blockade the MELV response 266 

was reduced across all end-tidal gas manipulation conditions, but no interaction was present. 267 

Figure 3A and B outline both indices of myocardial O2 demand and LADVmean responses to gas 268 

manipulations during control and β1-adrenergic receptor blockade.  Both figures indicate that 269 

during β1-adrenergic receptor blockade the myocardial O2 demand response was attenuated.   270 
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Discussion 271 

To our knowledge, this is the first study in healthy humans to measure the coronary vascular 272 

response to combined arterial PO2 and PCO2 manipulations with and without β1-adrenergic 273 

receptor blockade. The data show that despite reductions in RPP and MELV due to β1-adrenergic 274 

receptor blockade, the coronary blood velocity response was conserved during poikilocapnic and 275 

isocapnic hypoxia.  This indicates a direct influence of hypoxemia independent of myocardial O2 276 

demand.  Furthermore, a synergistic effect of PO2 and PCO2 was observed during hypercapnic 277 

hypoxia as evidenced by a plateau in the LADVmean-RPP relationship, suggesting a feed-forward 278 

epicardial coronary artery dilation that was absent during β1-adrenergic receptor blockade.  In 279 

contrast to our hypothesis, coronary hypoxemic vasodilation was conserved despite a significant 280 

attenuation of myocardial O2 demand following β1-adrenergic receptor blockade.   281 

 282 

Sympathetic feed-forward coronary vasodilation 283 

Our results showed a significant increase in RPP during hypercapnic hypoxia without any further 284 

increase in LADVmean leading to an observed plateau in the LADVmean-RPP relationship that was 285 

not present during β1-adrenergic receptor blockade (see Figure 3A).  We interpret this plateau in 286 

the LADVmean-RPP relationship during hypercapnic hypoxia (denoted by dagger in Figure 3A) as 287 

a feed-forward β1-adrenergic vasodilation in the epicardial LAD thereby attenuating the recorded 288 

rise in velocity despite an increase in total blood flow.  The β1-adrenergic receptor blockade with 289 

esmolol abolished this feed-forward dilation and attenuated RPP.  At all other time points, feed-290 

forward β1-adrenergic dilation is absent, RPP and MELV tend to be reduced, yet LADVmean are 291 

similar (see Figure 2).  The suggested β1-adrenergic mediated response within the epicardial 292 

artery is supported by the distribution of β-adrenergic receptor subtypes along the coronary 293 



H-00689-2017 – R2 

 

 18 

vascular tree.  Larger conduit vessels (diameter > 100 μm) exhibit a 2-fold greater distribution of 294 

β1-adrenergic receptors compared to β2-adrenergic receptors; whereas smaller resistance vessels 295 

(diameter < 100 μm) have a greater β2-adrenergic receptor distribution with approximately 85% 296 

of receptors being of the β2-adrenergic receptor subtype (3, 12, 14).  Furthermore, both β1- and 297 

β2-adrenergic receptors have been shown to contribute to coronary vasodilation in response to β-298 

adrenergic receptor agonists in a non-beating heart model (40) and closed-chest canines under 299 

cardiac pacing (29).   300 

The conserved coronary vascular response to physiological stimuli we observed during 301 

β1-adrenergic receptor blockade (Figure 2A and B) is consistent with a recent investigation in 302 

healthy humans assessing the coronary vascular response to isometric handgrip exercise.  303 

Maman et al. (27) illustrated in humans that the coronary vascular response to exercise was 304 

impaired during non-specific β-adrenergic receptor blockade (propranolol) but not β1-adrenergic 305 

receptor blockade (esmolol) despite similar reductions in markers of myocardial O2 demand.  306 

This finding suggests that β2-adrenergic receptors in the coronary microcirculation were 307 

responsible for the coronary vascular response during β1-adrenergic receptor blockade.  The 308 

present data are consistent with the results of Maman et al. (27), and provide the first evidence of 309 

a feed-forward β1-adrenergic receptor mediated human epicardial vasodilation during 310 

hypercapnic hypoxia.  However, neither study can rule out a change in coronary O2 extraction 311 

nor the effect of parasympathetic withdrawal.  312 

 313 

Influence of oxygen and carbon dioxide manipulations 314 

In the current data, we observed a synergistic effect of hypoxia and hypercapnia on the human 315 

coronary vascular response that was attenuated by β1-adrenergic receptor blockade.  Similar 316 
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findings were reported previously in canines under cardiac pacing during which the coronary 317 

blood flow response to hypoxia was augmented when combined with hypercapnia (9) 318 

Specifically, during hypercapnic hypoxia, a significant increase in RPP and MELV did not lead to 319 

a complimentary increase in LADVmean.  As described above, this finding suggests dilation in the 320 

epicardial artery that attenuated the recorded rise in LADV despite increases in blood flow.  In 321 

contrast, the current results show the LADVmean response to hypoxia was not further attenuated 322 

by poikilocapnia (see Figure 2).  In the present study, the reduction in PCO2 during poikilocapnic 323 

hypoxia may not have been sufficient to attenuate LADVmean or the change in LADVmean may 324 

have been too small to detect.  Recent investigations into the isolated effect of CO2 using large 325 

changes in PETCO2 (+7-10 mmHg) consistently show increases in coronary blood flow and 326 

velocity (6, 44, 48).  However, the influences of smaller changes in PETCO2 (+4-5 mmHg) have 327 

led to conflicting results with some investigations observing increases in coronary blood flow (4) 328 

and velocity (6) and others showing no effect (44, 48).  The confounding influence of hyperoxia 329 

may be responsible for these discrepant findings (44, 48).   330 

The current findings of increased LADV in response to hypoxia corroborate previous 331 

investigations and there is general agreement that hypoxemia leads to an increase in coronary 332 

blood flow in both animals (5, 21, 35) and humans (4, 6, 17, 31).  Evidence that hypoxemia has a 333 

direct vascular effect in humans is supported by studies which have found that the coronary 334 

blood flow response remained after normalizing for changes in myocardial O2 demand (4, 31).  335 

In addition, a study from our laboratory, Boulet et al. (6), found nearly equal contributions of 336 

hypoxia and cardiac O2 demand toward the coronary vascular response using multiple regression 337 

analysis.  The data from the current study are consistent with Boulet et al. (6) and support a 338 

direct role for hypoxemia in coronary vascular regulation that is independent from changes in 339 



H-00689-2017 – R2 

 

 20 

myocardial O2 demand (see Figure 2).  Specifically, we experimentally manipulated myocardial 340 

O2 demand and observed no change in the LADV response to poikilocapnic and isocapnic 341 

hypoxia.  Our data are consistent with the adenine nucleotide hypothesis suggesting that the 342 

coronary vascular response to hypoxemia in health is related to endothelial purinergic receptor 343 

activation from the release of ATP and its metabolites from erythrocytes rather than pathological 344 

cardiomyocyte hypoxia (14, 15, 36). 345 

 346 

Methodological considerations  347 

The current study utilized noninvasive transthoracic Doppler echocardiography to measure 348 

LADV which was used as an index for coronary blood flow.  This method of non-invasively 349 

quantifying the coronary vascular response to physiological stimuli has been used in multiple 350 

investigations (6, 27, 31, 33, 37) and permits comparison between studies.  The measurement of 351 

LADV has previously been validated against direct measurements of coronary blood flow using 352 

coronary Doppler guidewires and is highly correlated (30).  Previous measurements of LAD 353 

diameter recorded with multiple imaging modalities have consistently shown that LAD diameter 354 

does not change during acute hypoxia when compared to rest (13, 20).  However, our 355 

observation that LADV versus RPP relationship plateaued during hypercapnic hypoxia suggests 356 

that LAD dilation took place during this condition at our measurement site thereby attenuating 357 

the rise in LADV despite an increase in blood flow.  This plateau was absent during β1-adrenergic 358 

receptor blockade.  359 

Our data show reduced myocardial O2 demand in RPP and MELV measurements due to 360 

β1-adrenergic receptor blockade with esmolol (Table 2, and Figure 2).  Esmolol was chosen due 361 

to its fast mechanism of action, and quick elimination half-life, allowing a single subject to be 362 
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tested in one laboratory visit (39) thereby minimizing the larger day-to-day variability and 363 

associated extraneous factors.  Previous investigations comparing esmolol to propranolol, a 364 

nonspecific β-adrenergic receptor antagonist, show comparable HR and MAP reducing effects of 365 

esmolol at an infusion dose similar to that used in the present study (32).  Higher doses of 366 

esmolol have previously been used in experimental studies (2, 23), however there is a lack of 367 

strong evidence to suggest a higher dose of esmolol would have resulted in a greater reduction in 368 

HR and blood pressure in response to hypoxia (45).  Interestingly, esmolol did not significantly 369 

reduce HR during end-tidal gas manipulations (Table 2).  Although this is in contrast to previous 370 

experiments involving exercise interventions (27, 32), it may be the result of a greater 371 

parasympathetic to sympathetic balance during hypoxia compared with exercise interventions.  372 

The dose of esmolol used currently resulted in a clinically relevant reduction in myocardial O2 373 

demand as the RPP we observed with esmolol during hypercapnic hypoxia is similar to that 374 

experienced by hypertensive patients undergoing treatment with β-adrenergic receptor 375 

antagonists (24). 376 

 377 

Conclusion 378 

The current data confirm that LADV correlates with RPP and MELV but also indicate that 379 

hypoxemia directly increases coronary blood flow independent from changes in myocardial O2 380 

demand, potentially through feedback adenine-nucleotide release from red blood cells in 381 

response to low blood oxyhemoglobin saturation.  Additionally, we found a synergistic effect of 382 

O2 and CO2 on the coronary vasculature that manifested as a feed-forward β1-adrenergic dilation 383 

in the epicardial artery that was abolished by β1-adrenergic receptor blockade.  These findings 384 
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demonstrate a direct influence of arterial PO2 on coronary vascular regulation that is independent 385 

from associated changes in myocardial O2 consumption.  386 
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TABLES  

Table 1. Effect of β1-adrenergic receptor blockade on respiratory measurements at baseline and during poikilocapnic-, isocapnic-, and 

hypercapnic hypoxia. 

   

Baseline 

Poikilocapnic 

Hypoxia 

Isocapnic  

Hypoxia 

Hypercapnic  

Hypoxia 

 

Drug 

 

Time 

 

Interaction 

V̇E  Placebo 12.3  0.5 14.9  0.8 21.8  2.3* 38.0  3.6* 
P = 0.12 P < 0.01 P = 0.59 

(l/min) Esmolol 11.9  0.4 13.3  0.6 18.7  1.0* 34.1  3.4* 

VT  Placebo 0.8  0.0 1.0  0.1 1.3  0.1* 2.0  0.1* 
P < 0.01 P < 0.01 P = 0.34 

(l) Esmolol 0.7  0.0 0.9  0.1 1.1  0.1* 1.8  0.1* 

fb  Placebo 14  1 14  1 15  1 17  1* 
P = 0.41 P < 0.01 P = 0.83 

(/min) Esmolol 15  1 14  1 16  1 18  1* 

SpO2  Placebo 98  0 82  1* 80  1* 80  1* 
P < 0.05 P < 0.01 P = 0.88 

(%) Esmolol 98  1 81  1* 79  1* 80  1* 

PETO2  Placebo 94.1  1.5 42.6  0.5* 43.5  0.2* 43.4  0.2* 
P < 0.01 P < 0.01 P < 0.01 

(mmHg) Esmolol 89.7  1.2† 42.3  0.6* 43.9  0.3* 43.7  0.1* 

PETCO2  Placebo 37.5  0.8 33.1  0.8* 37.0  0.7 42.0  0.6* 
P = 0.13 P < 0.01 P = 0.38 

(mmHg) Esmolol 39.1  0.6 34.3  0.8* 37.9  0.5 42.6  0.5* 

Values represent mean  SEM, n = 11. *indicates significant difference from baseline (P<0.05); †indicates significant different from 

placebo condition. V̇E, minute ventilation; VT, tidal volume; fb, frequency of breathing; SpO2, oxyhemoglobin saturation; PETO2, partial 

pressure of end-tidal oxygen; PETCO2, partial pressure of end-tidal carbon dioxide. 
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Table 2. Effect of β1-adrenergic receptor blockade on cardiovascular measurements at baseline and during poikilocapnic-, isocapnic-, 

and hypercapnic hypoxia 

   

Baseline 

Poikilocapnic 

Hypoxia 

Isocapnic 

Hypoxia 

Hypercapnic 

Hypoxia 

 

Drug 

 

Time 

 

Interaction 
HR Placebo 55  3 68  2* 67  4* 73  4* 

P = 0.10 P < 0.01 P = 0.09 
(/min) Esmolol 55  3 66  3* 65  3* 69  3* 

SBP  Placebo 119  2 124  3* 127  4* 141  4* 
P < 0.05 P < 0.01 P < 0.05 

(mmHg) Esmolol 114  2 116  3† 119  3 124  4*† 

DBP  Placebo 63  2 62  2 62  1 68  2* 
P = 0.61 P < 0.01 P = 0.56 

(mmHg) Esmolol 62  1 62  2 61  2 66  2* 

MAP  Placebo 82  1 83  1 84  1 92  2* 
P = 0.90 P < 0.01 P = 0.13 

(mmHg) Esmolol 79  2 80  2 81  2 85  2* 

EF  Placebo 61  1 63  2 63  2 65  1 
P = 0.08 P = 0.07 P = 0.63 

(%) Esmolol 60  1 59  2 60  2 61  2 

EDV  Placebo 102  5 98  6 94  6* 96  7 
P = 0.96 P < 0.05 P = 0.67 

(ml) Esmolol 99  5 98  5 95  5* 96  5 

ESV  Placebo 40  2 36  3 35  3* 34  3* 
P = 0.09 P < 0.01 P = 0.45 

(ml) Esmolol 40  3 40  3 38  4* 37  3* 

Ees  Placebo 1.7  0.1 1.9  0.1* 2.2  0.2* 2.3  0.2* 
P < 0.01 P < 0.01 P = 0.23 

(mmHg/ml) Esmolol 1.6  0.1 1.7  0.2 1.8  0.1* 1.9  0.1* 

RPP Placebo 6597  320 8510  397* 8656  683* 10366  772* 
P = 0.03  P < 0.01 P < 0.01  

(mmHg/min) Esmolol 6320  364 7706  394* 7794  448* 8478  463*† 

MELV Placebo 64.4  2.7 79.4  5.1* 75.9  6.1* 92.7  5.9* 
P = 0.02  P < 0.01 P = 0.17 

(J/min) Esmolol 60.9  3.8 71.9  3.3* 70.4  3.8* 78.3  3.9* 

LADVmean Placebo 20.4  1.8 29.4  2.2* 29.5  1.5* 30.4  2.4* 
P = 0.78 P < 0.01 P = 0.37 

(cm/s) Esmolol 20.8  1.8 27.3  1.6* 30.3  2.2* 31.8  3.2* 

LADVmax Placebo 28.8  2.9 40.1  3.2* 42.7  2.6* 43.2  3.4* 
P = 0.93 P < 0.01 P = 0.32 

(cm/s) Esmolol 32.8  3.2 38.0  2.8* 40.2  3.0* 43.4  4.2* 
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Values represent mean  SEM, n = 11. *indicates significant difference from baseline (P<0.05); †indicates significant different from 

placebo condition. HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; EF, ejection 

fraction; EDV, end diastolic volume; ESV, end systolic volume; Ees, end systolic elastance; RPP, rate pressure product; MELV, 

mechanical energy of the left ventricle; LADVmean, mean left anterior descending coronary blood velocity; LADVmax, maximum left 

anterior descending coronary blood velocity.  
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FIGURE LEGENDS 

Figure 1. Experimental schematic of end-tidal gas measurements.  (A) Partial pressure of 

end-tidal carbon dioxide (PETCO2) and (B) partial pressure of end-tidal oxygen (PETO2) during 

baseline, poikilocapnic, isocapnic and hypercapnic hypoxia. Values represent 15-sec mean  

SEM of all subjects both with (open squares) and without (closed squares) β1-adrenergic receptor 

blockade (n = 11).  

 

Figure 2. Coronary blood velocity and myocardial O2 demand responses to end-tidal gas 

manipulations with (dashed lines) and without (solid lines) β1-adrenergic receptor 

blockade. (A) Mean left anterior descending coronary blood velocity (LADVmean) response, (B) 

Maximum left anterior descending coronary blood velocity (LADVmax) response. (C) Rate 

pressure product response (RPP), (D) Left ventricular mechanical energy (MELV) response. 

Values represent mean  SEM, n = 11. * denotes a significant change from respective baseline (P 

< 0.05), † indicates significant difference between β1-adrenergic blockade and placebo 

conditions. P-values along x-axis in panel C are post-hoc analysis values comparing placebo to 

β1-adrenergic receptor blockade.  

 

Figure 3. Changes in coronary blood velocity compared to changes in myocardial O2 

demand to end-tidal gas manipulations with (dashed lines) and without (solid lines) β1-

adrenergic receptor blockade. Values are mean  SEM, n = 11. † denotes significant difference 

between esmolol and placebo in the hypercapnic hypoxia condition for RPP. BL, baseline; PH, 

poikilocapnic hypoxia; IH, isocapnic hypoxia; HH, hypercapnic hypoxia; RPP, rate pressure 
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product; MELV, mechanical energy of the left ventricle; LADVmean, mean left anterior descending 

coronary blood velocity. 


