30 research outputs found

    Cancer related gene expression in the human prostate zones

    Get PDF
    The normal prostate: The prostate is the largest accessory gland of the male reproductive system. (Figure 1) The healthy adult prostate is about the size of a chestnut and conical in shape. In general, it measures 20 ml in volume, though it can become five or six time that size with increasing age. The prostate is shaped like an inverted pyramid and lies between the bladder and the pelvic floor (1). The prostate supplies about 30% of the volume of the seminal fluid. The normal prostate is composed of epithelial glands and stroma. These glands represent the terminal tubular portion of long tubulo-alveolar glands that radiate from the urethra. The glands are lined by two cell layers: an outer low cuboidal layer and an inner layer of tall columnar mucin-secreting epithelium. Half of the volume of the prostate is occupied by the fibromuscular stroma between the glands. The prostate zones: The prostate consist of several zones, the peripheral zone, the central zone and the transition zone (Figure 2). Prostate cancer mainly occurs in peripheral zone, whereas benign prostatic hyperplasia (BPH) merely occurs in transition zone. BPH is a benign enlargement of the prostate

    The additional value of TGFΞ²1 and IL-7 to predict the course of prostate cancer progression

    Get PDF
    Background: Given the fact that prostate cancer incidence will increase in the coming years, new prognostic biomarkers are needed with regard to the biological aggressiveness of the prostate cancer diagnosed. Since cytokines have been associated with the biology of cancer and its prognosis, we determined whether transforming growth factor beta 1 (TGFΞ²1), interleukin-7 (IL-7) receptor and IL-7 levels add additional prognostic information with regard to prostate cancer

    Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activating mutations of the epidermal growth factor receptor (<it>EGFR</it>) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease.</p> <p>Methods</p> <p>Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples.</p> <p>Results</p> <p>EGFR protein overexpression (EGFR<sub>high</sub>) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFR<sub>high </sub>tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFR<sub>low</sub>). Microarray analysis did not reveal any differences in gene expression between EGFR<sub>high </sub>and EGFR<sub>low </sub>tumours. Conversely, in EGFR<sub>high </sub>tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFR<sub>high </sub>(n=3) and mutated/EGFR<sub>low </sub>tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression.</p> <p>Conclusions</p> <p>Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.</p

    Aspartoacylase-LacZ Knockin Mice: An Engineered Model of Canavan Disease

    Get PDF
    Canavan Disease (CD) is a recessive leukodystrophy caused by loss of function mutations in the gene encoding aspartoacylase (ASPA), an oligodendrocyte-enriched enzyme that hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. The neurological phenotypes of different rodent models of CD vary considerably. Here we report on a novel targeted aspa mouse mutant expressing the bacterial Ξ²-Galactosidase (lacZ) gene under the control of the aspa regulatory elements. X-Gal staining in known ASPA expression domains confirms the integrity of the modified locus in heterozygous aspa lacZ-knockin (aspalacZ/+) mice. In addition, abundant ASPA expression was detected in Schwann cells. Homozygous (aspalacZ/lacZ) mutants are ASPA-deficient, show CD-like histopathology and moderate neurological impairment with behavioural deficits that are more pronounced in aspalacZ/lacZ males than females. Non-invasive ultrahigh field proton magnetic resonance spectroscopy revealed increased levels of NAA, myo-inositol and taurine in the aspalacZ/lacZ brain. Spongy degeneration was prominent in hippocampus, thalamus, brain stem, and cerebellum, whereas white matter of optic nerve and corpus callosum was spared. Intracellular vacuolisation in astrocytes coincides with axonal swellings in cerebellum and brain stem of aspalacZ/lacZ mutants indicating that astroglia may act as an osmolyte buffer in the aspa-deficient CNS. In summary, the aspalacZ mouse is an accurate model of CD and an important tool to identify novel aspects of its complex pathology

    Modulation of Androgen Receptor Signaling in Hormonal Therapy-Resistant Prostate Cancer Cell Lines

    Get PDF
    Background: Prostate epithelial cells depend on androgens for survival and function. In (early) prostate cancer (PCa) androgens also regulate tumor growth, which is exploited by hormonal therapies in metastatic disease. The aim of the present study was to characterize the androgen receptor (AR) response in hormonal therapy-resistant PC346 cells and identify potential disease markers. Methodology/Principal Findings: Human 19K oligoarrays were used to establish the androgen-regulated expression profile of androgen-responsive PC346C cells and its derivative therapy-resistant sublines: PC346DCC (vestigial AR levels), PC346Flu1 (AR overexpression) and PC346Flu2 (T877A AR mutation). In total, 107 transcripts were differentially-expressed in PC346C and derivatives after R1881 or hydroxyflutamide stimulations. The AR-regulated expression profiles reflected the AR modifications of respective therapy-resistant sublines: AR overexpression resulted in stronger and broader transcriptional response to R1881 stimulation, AR down-regulation correlated with deficient response of AR-target genes and the T877A mutation resulted in transcriptional response to both R1881 and hydroxyflutamide. This AR-target signature was linked to multiple publicly available cell line and tumor derived PCa databases, revealing that distinct functional clusters were differentially modulated during PCa progression. Differentiation and secretory functions were up-regulated in primary PCa but repressed i

    Bypass Mechanisms of the Androgen Receptor Pathway in Therapy-Resistant Prostate Cancer Cell Models

    Get PDF
    Background: Prostate cancer is initially dependent on androgens for survival and growth, making hormonal therapy the cornerstone treatment for late-stage tumors. However, despite initial remission, the cancer will inevitably recur. The present study was designed to investigate how androgen-dependent prostate cancer cells eventually survive and resume growth under androgen-deprived and antiandrogen supplemented conditions. As model system, we used the androgen-responsive PC346C cell line and its therapy-resistant sublines: PC346DCC, PC346Flu1 and PC346Flu2. Methodology/Principal Findings: Microarray technology was used to analyze differences in gene expression between the androgen-responsive and therapy-resistant PC346 cell lines. Microarray analysis revealed 487 transcripts differentiallyexpressed between the androgen-responsive and the therapy-resistant cell lines. Most of these genes were common to all three therapy-resistant sublines and only a minority (,5%) was androgen-regulated. Pathway analysis revealed enrichment in functions involving cellular movement, cell growth and cell death, as well as association with cancer and reproductive system disease. PC346DCC expressed residual levels of androgen receptor (AR) and showed significant down-regulation of androgen-regulated genes (p-value = 10 27). Up-regulation of VAV3 and TWIST1 oncogenes and repression of the DKK3 tumor-suppressor was observed in PC346DCC, suggesting a potential AR bypass mechanism. Subsequent validation of these three genes in patient samples confirmed that expression was deregulated during prostate cancer progression

    Gene expression profiling of the human prostate zones

    No full text
    OBJECTIVE: To investigate differences in gene expression in different zones of the prostate by microarray analyses, to better understand why aggressive tumours predominantly occur in the peripheral zone (PZ), whereas benign prostatic hyperplasia (BPH) occurs almost exclusively in the transition zone (TZ). MATERIALS AND METHODS: Expression profiling of both prostate zones was done by microarray analysis. Reverse transcription-polymerase chain reaction (RT-PCR) of the top 18 genes confirmed the microarray analyses. RT-PCR with common cell-type markers indicated that the differential expression between the zones was not caused by an unequal distribution of different cell types. Primary stromal and epithelial prostate cells were used to study cell type expression in the 12 highest differentially expressed zonal-specific genes. RESULTS: In all, 346 genes were identified as preferentially expressed in the TZ or PZ. A few of the TZ-specific genes, including ASPA, FLJ10970 and COCH, were also stroma-specific. Comparisons with other microarray studies showed that gene expression profiles of prostate cancer and BPH correlate with the expression profiles of the PZ and TZ, respectively. CONCLUSION: Gene expression differs between the PZ and TZ of the prostate, and stromal-epithelial interactions might be responsible for the distinct zonal localization of prostate diseases

    Monocyte gene-expression profiles associated with childhood-onset type 1 diabetes and disease risk: a study of identical twins.

    No full text
    OBJECTIVE: Monocytes in childhood-onset type 1 diabetes show distinct gene expression. We hypothesize that monocyte activation in monozygotic (MZ) twin pairs discordant for childhood-onset type 1 diabetes could reflect distinct stages of the disease process including diabetes susceptibility (differences between twins, both diabetic and nondiabetic, and control subjects) and/or disease progression (differences between diabetic and nondiabetic twins). RESEARCH DESIGN AND METHODS: We studied patterns of inflammatory gene expression in peripheral blood monocytes of MZ twin pairs (n = 10 pairs) discordant for childhood-onset type 1 diabetes, normal control twin pairs (n = 10 pairs), and healthy control subjects (n = 51) using quantitative-PCR (Q-PCR). We tested the 24 genes previously observed by whole genome analyses and verified by Q-PCR in autoimmune diabetes and performed a hierarchical cluster analysis. RESULTS: Of 24 genes abnormally expressed in childhood-onset type 1 diabetes, we revalidated abnormal expression in 16 of them in diabetic twins including distinct sets of downregulated (P < 0.03) and upregulated (P < 0.02) genes. Of these 16 genes, 13 were abnormally expressed in nondiabetic twins, implicating these genes in diabetes susceptibility (P < 0.044 for all). Cluster analysis of monocyte gene-expression in nondiabetic twins identified two distinct, mutually exclusive clusters, while diabetic twins had a network of positively correlated genes. CONCLUSIONS: Patients with childhood-onset type 1 diabetes show abnormal monocyte gene-expression levels with an altered gene-expression network due to gene-environment interaction. Importantly, perturbed gene-expression clusters were also detected in nondiabetic twins, implicating monocyte abnormalities in susceptibility to diabetes.The authors thank the British Diabetic Twin Trust (H.B. and R.D.L.) and the Juvenile Diabetes Research Foundation International (JDRFI) (R.D.L.). The studies were also supported by the European Union (MONODIAB, contract no. QLRT-1999-00276), JDRFI, aand the Dutch Diabetic Foundation (contract no. 96.606)
    corecore