62,455 research outputs found

    Epidemiology and burden of nasal congestion

    Get PDF
    Nasal congestion, which may be described as fullness, obstruction, reduced airflow, or being "stuffed up," is a commonly encountered symptom in clinical practice. Systematic study of congestion has largely considered it as a component of a disease state. Conditions associated with congestion include nasal polyposis, obstructive sleep apnea, and anatomic variation; however, most information on the burden of congestion comes from studies of allergic rhinitis and rhinosinusitis, diseases of which congestion is the major symptom. Congestion can be caused by other rhinologic conditions, such as non-allergic rhinitis, viral or bacterial rhinitis, and vasomotor rhinitis. Allergic rhinitis affects as much as one quarter of the population worldwide and imposes a significant economic burden. Additionally, allergic rhinitis significantly impairs quality of life; congestion causes allergic rhinitis sufferers decreased daytime productivity at work or school and reduces night-time sleep time and quality. Annually, rhinosinusitis affects tens of millions of Americans and leads to approximately $6 billion in overall health care expenditures; it has been found to be one of the most costly physical conditions for US employers. Given the high prevalence and significant social and economic burden of nasal congestion, this symptom should be a key consideration in treating patients with rhinologic disease, and there continues to be a significant unmet medical need for effective treatment options for this condition. © 2010 Stewart et al

    Morphological development and cytochrome c oxidase activity in Streptomyces lividans are dependent on the action of a copper bound Sco protein

    Get PDF
    Copper has an important role in the life cycle of many streptomycetes, stimulating the developmental switch between vegetative mycelium and aerial hyphae concomitant with the production of antibiotics. In streptomycetes, a gene encoding for a putative Sco-like protein has been identified and is part of an operon that contains two other genes predicted to handle cellular copper. We report on the Sco-like protein from Streptomyces lividans (Sco Sl ) and present a series of experiments that firmly establish a role for Sco Sl as a copper metallochaperone as opposed to a role as a thiol-disulphide reductase that has been assigned to other bacterial Sco proteins. Under low copper concentrations, a Δ sco mutant in S. lividans displays two phenotypes; the development switch between vegetative mycelium and aerial hyphae stalls and cytochrome c oxidase (CcO) activity is significantly decreased. At elevated copper levels, the development and CcO activity in the Δ sco mutant are restored to wild-type levels and are thus independent of Sco Sl . A CcO knockout reveals that morphological development is independent of CcO activity leading us to suggest that Sco Sl has at least two targets in S. lividans . We establish that one Sco Sl target is the dinuclear Cu A domain of CcO and it is the cupric form of Sco Sl that is functionally active. The mechanism of cupric ion capture by Sco Sl has been investigated, and an important role for a conserved His residue is identified. </jats:p

    Conceptual and Empirical Issues for Alternative Student Loan Designs: The Significance of Loan Repayment Burdens for the US

    Get PDF
    In this article, we compare the two main types of student loans used to finance postsecondary education: mortgage-type loans, which are repaid over a set period of time and mainly used in the United States; and income-contingent loans, which are repaid depending on students’ future income and used in Australia and England. We argue that the major concern with mortgage-type loans is the repayment burden that falls on students. Repayment burden—the proportion of a debtor’s income required to repay loans—is fundamental to the assessment of student loan systems because it affects the probability of students defaulting on loan repayment, and because it bears on debtors’ consumption and standard of living. We show that Stafford loans imply extremely difficult financial circumstances for a minority of U.S. loan recipients, and that income-contingent loans can solve those problems. The financial benefits of income-contingent loans are illustrated through a hypothetical student loan experience

    Accretion, Primordial Black Holes and Standard Cosmology

    Full text link
    Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.Comment: 11 pages, 3 figure

    Platinum-Based Nanocatalysts for Proton Exchange Membrane Fuel Cells

    Get PDF
    Fuel cells have potential to become an integral technology in a future sustainable energy system. For transport applications, the proton exchange membrane fuel cell (PEMFC) is the most promising option, exhibiting light weight and high energy density. However, large-scale commercialization is impeded by expensive catalyst materials and slow oxygen reduction reaction (ORR) kinetics on the cathode side. Several alternatives to the conventional platinum PEMFC catalyst have been proposed and studied during the last decades, one being platinum-rare earth (Pt-RE) metal alloys. With enhanced ORR activities and maintained stability, these materials are highly interesting for deployment in PEMFCs, and could potentially reduce both catalyst material use and overall fuel cell cost. In practical fuel cells, catalysts are required in nanoparticulate form, to facilitate sufficient performance while keeping material utilization high. Unfortunately, scalability remains as a main obstacle for Pt-RE nanoparticle synthesis, as fabrication of these materials has proven challenging, motivated by the high oxygen affinity of the rare-earth metals.This thesis investigates the use of sputtering onto liquid (SoL) substrates as a potential synthesis method for Pt-RE nanocatalysts. The influence of sputtering parameters, including substrate type and temperature, as well as gas environment, on the size and morphology of platinum-based nanocatalysts are studied. Transmission electron microscopy of platinum sputtered in four different liquids indicates that the size of the nanoparticles is only weakly dependent on temperature. Furthermore, catalyst layers fabricated from the SoL-synthesized nanocatalysts are evaluated in a half cell setup. The electrochemical results shows that high performing catalyst layer fabrication from SoL-synthesized nanoparticles is viable, which opens for further development of the technique

    The longitudinal interplay between negative and positive symptom trajectories in patients under antipsychotic treatment: a post hoc analysis of data from a randomized, 1-year pragmatic trial

    Get PDF
    BACKGROUND: Schizophrenia is a highly heterogeneous disorder with positive and negative symptoms being characteristic manifestations of the disease. While these two symptom domains are usually construed as distinct and orthogonal, little is known about the longitudinal pattern of negative symptoms and their linkage with the positive symptoms. This study assessed the temporal interplay between these two symptom domains and evaluated whether the improvements in these symptoms were inversely correlated or independent with each other. METHODS: This post hoc analysis used data from a multicenter, randomized, open-label, 1-year pragmatic trial of patients with schizophrenia spectrum disorder who were treated with first- and second-generation antipsychotics in the usual clinical settings. Data from all treatment groups were pooled resulting in 399 patients with complete data on both the negative and positive subscale scores from the Positive and Negative Syndrome Scale (PANSS). Individual-based growth mixture modeling combined with interplay matrix was used to identify the latent trajectory patterns in terms of both the negative and positive symptoms. Pearson correlation coefficients were calculated to examine the relationship between the changes of these two symptom domains within each combined trajectory pattern. RESULTS: We identified four distinct negative symptom trajectories and three positive symptom trajectories. The trajectory matrix formed 11 combined trajectory patterns, which evidenced that negative and positive symptom trajectories moved generally in parallel. Correlation coefficients for changes in negative and positive symptom subscale scores were positive and statistically significant (P < 0.05). Overall, the combined trajectories indicated three major distinct patterns: (1) dramatic and sustained early improvement in both negative and positive symptoms (n = 70, 18%), (2) mild and sustained improvement in negative and positive symptoms (n = 237, 59%), and (3) no improvement in either negative or positive symptoms (n = 82, 21%). CONCLUSIONS: This study of symptom trajectories over 1 year shows that changes in negative and positive symptoms were neither inversely nor independently related with each other. The positive association between these two symptom domains supports the notion that different symptom domains in schizophrenia may depend on each other through a unified upstream pathological disease process

    Utilization of CT scanning associated with complex spine surgery.

    Get PDF
    BackgroundDue to the risk associated with exposure to ionizing radiation, there is an urgent need to identify areas of CT scanning overutilization. While increased use of diagnostic spinal imaging has been documented, no previous research has estimated the magnitude of follow-up imaging used to evaluate the postoperative spine.MethodsThis retrospective cohort study quantifies the association between spinal surgery and CT utilization. An insurance database (Humana, Inc.) with ≈ 19 million enrollees was employed, representing 8 consecutive years (2007-2014). Surgical and imaging procedures were captured by anatomic-specific CPT codes. Complex surgeries included all cervical, thoracic and lumbar instrumented spine fusions. Simple surgeries included discectomy and laminectomy. Imaging was restricted to CT and MRI. Postoperative imaging frequency extended to 5-years post-surgery.ResultsThere were 140,660 complex spinal procedures and 39,943 discectomies and 49,889 laminectomies. MRI was the predominate preoperative imaging modality for all surgical procedures (median: 80%; range: 73-82%). Postoperatively, CT prevalence following complex procedures increased more than two-fold from 6 months (18%) to 5 years (≥40%), and patients having a postoperative CT averaged two scans. For simple procedures, the prevalence of postoperative CT scanning never exceeded 30%.ConclusionsCT scanning is used frequently for follow-up imaging evaluation following complex spine surgery. There is emerging evidence of an increased cancer risk due to ionizing radiation exposure with CT. In the setting of complex spine surgery, actions to mitigate this risk should be considered and include reducing nonessential scans, using the lowest possible radiation dose protocols, exerting greater selectivity in monitoring the developing fusion construct, and adopting non-ferromagnetic implant biomaterials that facilitate MRI postoperatively

    Measurement of filling factor 5/2 quasiparticle interference: observation of charge e/4 and e/2 period oscillations

    Full text link
    A standing problem in low dimensional electron systems is the nature of the 5/2 fractional quantum Hall state: its elementary excitations are a focus for both elucidating the state's properties and as candidates in methods to perform topological quantum computation. Interferometric devices may be employed to manipulate and measure quantum Hall edge excitations. Here we use a small area edge state interferometer designed to observe quasiparticle interference effects. Oscillations consistent in detail with the Aharanov-Bohm effect are observed for integer and fractional quantum Hall states (filling factors 2, 5/3, and 7/3) with periods corresponding to their respective charges and magnetic field positions. With these as charge calibrations, at 5/2 filling factor and at lowest temperatures periodic transmission through the device consistent with quasiparticle charge e/4 is observed. The principal finding of this work is that in addtion to these e/4 oscillations, periodic structures corresponding to e/2 are also observed at 5/2 and at lowest temperatures. Properties of the e/4 and e/2 oscillations are examined with the device sensitivity sufficient to observe temperature evolution of the 5/2 quasiparticle interference. In the model of quasiparticle interference, this presence of an effective e/2 period may empirically reflect an e/2 quasiparticle charge, or may reflect multiple passes of the e/4 quasiparticle around the interferometer. These results are discussed within a picture of e/4 quasiparticle excitations potentially possessing non-Abelian statistics. These studies demonstrate the capacity to perform interferometry on 5/2 excitations and reveal properties important for understanding this state and its excitations.Comment: version 3 contains additional data beyond version 2, 26 pages, 8 figures PNAS 081259910

    An Excess of Jupiter Analogs in Super-Earth Systems

    Get PDF
    We use radial velocity observations to search for long-period gas giant companions in systems hosting inner super-Earth (1-4 R_Earth, 1-10 M_Earth) planets to constrain formation and migration scenarios for this population. We consistently re-fit published RV datasets for 65 stars and find 9 systems with statistically significant trends indicating the presence of an outer companion. We combine these RV data with AO images to constrain the masses and semi-major axes of these companions. We quantify our sensitivity to the presence of long-period companions by fitting the sample with a power law distribution and find an occurrence rate of 39+/-7% for companions 0.5-20 M_Jup and 1-20 AU. Half of our systems were discovered by the transit method and half were discovered by the RV method. While differences in RV baselines and number of data points between the two samples lead to different sensitivities to distant companions, we find that occurrence rates of gas giant companions in each sample are consistent at the 0.5σ\sigma level. We compare the frequency of Jupiter analogs in these systems to the equivalent rate from field star surveys and find that Jupiter analogs are more common around stars hosting super-Earths. We conclude that the presence of outer gas giants does not suppress the formation of inner super-Earths, and that these two populations of planets instead appear to be correlated. We also find that the stellar metallicities of systems with gas giant companions are higher than those without companions, in agreement with the well-established metallicity correlation from RV surveys of field stars.Comment: published in A

    The PESERA-DESMICE Modeling Framework for Spatial Assessment of the Physical Impact and Economic Viability of Land Degradation Mitigation Technologies

    Get PDF
    This paper presents the PESERA-DESMICE integrated model developed in the EU FP6 DESIRE project. PESERA-DESMICE combines a process-based erosion prediction model extended with process descriptions to evaluate the effects of measures to mitigate land degradation, and a spatially-explicit economic evaluation model to evaluate the financial viability of these measures. The model operates on a grid-basis and is capable of addressing degradation problems due to wind and water erosion, grazing, and fire. It can evaluate the effects of improved management strategies such as maintaining soil cover, retention of crop residues, irrigation, water harvesting, terracing, and strip cropping. These management strategies introduce controls to various parameters slowing down degradation processes. The paper first describes how the physical impact of the various management strategies is assessed. It then continues to evaluate the applicability limitations of the various mitigation options, and to inventory the spatial variation in the investment and maintenance costs involved for each of a series of technologies that are deemed relevant in a given study area. The physical effects of the implementation of the management strategies relative to the situation without mitigation are subsequently valuated in monetary terms. The model pays particular attention to the spatial variation in the costs and benefits involved as a function of environmental conditions and distance to markets. All costs and benefits are added to a cash flow and a discount rate is applied. This allows a cost-benefit analysis(CBA) to be performed over a comparative planning period based on the economic lifetime of the technologies being evaluated. It is assumed that land users will only potentially implement technologies if they are financially viable. After this framework has been set-up, various analyses can be made, including the effect of policy options on the potential uptake of mitigation measures and an analysis of where cost-effectiveness is highest. Apart from model description, we present case studies of the use of the framework to illustrate its functioning and relevance for policy-making
    • …
    corecore