95,589 research outputs found

    Intense terahertz laser fields on a two-dimensional electron gas with Rashba spin-orbit coupling

    Full text link
    The spin-dependent density of states and the density of spin polarization of an InAs-based two-dimensional electron gas with the Rashba spin-orbit coupling under an intense terahertz laser field are investigated by utilizing the Floquet states to solve the time-dependent Schr\"odinger equation. It is found that both densities are strongly affected by the terahertz laser field. Especially a terahertz magnetic moment perpendicular to the external terahertz laser field in the electron gas is induced. This effect can be used to convert terahertz electric signals into terahertz magnetic ones efficiently.Comment: 3 pages, 3 figures, a typo in Fig. 3(b) is correcte

    Insulating state and the importance of the spin-orbit coupling in Ca3_3CoRhO6_6

    Full text link
    We have carried out a comparative theoretical study of the electronic structure of the novel one-dimensional Ca3_3CoRhO6_6 and Ca3_3FeRhO6_6 systems. The insulating antiferromagnetic state for the Ca3_3FeRhO6_6 can be well explained by band structure calculations with the closed shell high-spin d5d^5 (Fe3+^{3+}) and low-spin t2g6t_{2g}^{6} (Rh3+^{3+}) configurations. We found for the Ca3_3CoRhO6_6 that the Co has a strong tendency to be d7d^7 (Co2+^{2+}) rather than d6d^6 (Co3+^{3+}), and that there is an orbital degeneracy in the local Co electronic structure. We argue that it is the spin-orbit coupling which will lift this degeneracy thereby enabling local spin density approximation + Hubbard U (LSDA+U) band structure calculations to generate the band gap. We predict that the orbital contribution to the magnetic moment in Ca3_3CoRhO6_6 is substantial, i.e. significantly larger than 1 μB\mu_B per formula unit. Moreover, we propose a model for the contrasting intra-chain magnetism in both materials.Comment: 7 pages, 4 figures, and 1 tabl
    corecore