3 research outputs found

    Theoretical optimization of the shape and size of adsorbent grains for associated petroleum gas drying

    Get PDF
    The shape of adsorbent grains used for drying hydrocarbon gas flows at a reduced hydraulic resistance of their beds are theoretically optimized. A two-velocity model of gas flow in fixed beds consisting of differently shaped holed particles is used for calculations at typical parameters of the associated petroleum gas drying process. It is shown that the optimum shape of a grain is a four-spoke ring. At an equivalent diameter of 3 mm, such a grain is 6.154 × 6.154 mm in size, and its walls and baffles are 1.026 mm thick

    Theoretical optimization of the shape and size of adsorbent grains for associated petroleum gas drying

    No full text
    The shape of adsorbent grains used for drying hydrocarbon gas flows at a reduced hydraulic resistance of their beds are theoretically optimized. A two-velocity model of gas flow in fixed beds consisting of differently shaped holed particles is used for calculations at typical parameters of the associated petroleum gas drying process. It is shown that the optimum shape of a grain is a four-spoke ring. At an equivalent diameter of 3 mm, such a grain is 6.154 × 6.154 mm in size, and its walls and baffles are 1.026 mm thick
    corecore