678 research outputs found

    Isolation of Galectin-1 from Human Platelets: Its Interaction with Actin

    Get PDF
    Galectins are a family of animal lectins defined by their β-galactoside-binding specificity and a consensus sequence in their carbohydrate-recognition domain. Galectin-1 (Gal-1) is expressed as a non-covalently linked homodimer present in a variety of tissues. Here we describe its isolation from human platelets by a procedure involving ionic exchange chromatography and affinity chromatography on lactose-agarose. Platelet Gal-1 co-purifies with actin, forming an actin-Gal-1 complex which does no dissociate even after treatment with sodium dodecyl sulfate. The presence of both proteins was confirmed by Western blot and by trypsin digestion followed by mass spectrometry identification. By hemagglutination assays we studied the response of recombinant Gal-1/actin, mixed and pre-incubated in different proportions, and then tested against neuraminidase treated rabbit red blood cells. The complex formation was confirmed by confocal microscopy, showing that both proteins co-localised in resting platelets as well as in thrombin-activated ones. These results suggest that endogenous Gal-1 forms an intracellular complex with monomeric actin and that, after platelet activation, Gal-1 could play a role in the polymerization-depolymerization process of actin, which concludes in platelet aggregation.Facultad de Ciencias Exacta

    Nature of the Electronic Excitations near the Brillouin Zone Boundary of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    Based on angle resolved photoemission spectra measured on different systems at different dopings, momenta and photon energies, we show that the anomalously large spectral linewidth in the (π,0)(\pi,0) region of optimal doped and underdoped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} has significant contributions from the bilayer splitting, and that the scattering rate in this region is considerably smaller than previously estimated. This new picture of the electronic excitation near (π,0)(\pi,0) puts additional experimental constraints on various microscopic theories and data analysis.Comment: 5 pages, 4 figure

    Signature of Superfluid Density in the Single-Particle Excitation Spectrum of Bi2Sr2CaCu2O8+delta

    Full text link
    We report that the doping and temperature dependence of photoemission spectra near the Brillouin zone boundary of Bi2Sr2CaCu2O8+delta exhibit unexpected sensitivity to the superfluid density. In the superconducting state, the photoemission peak intensity as a function of doping scales with the superfluid density and the condensation energy. As a function of temperature, the peak intensity shows an abrupt behavior near the superconducting phase transition temperature where phase coherence sets in, rather than near the temperature where the gap opens. This anomalous manifestation of collective effects in single-particle spectroscopy raises important questions concerning the mechanism of high-temperature superconductivity.Comment: 14 pages, open with Acrobat 3.0+. "Science" 280, (July, 2000) 277, submitted 11 April 200

    Evidence for an energy scale for quasiparticle dispersion in Bi_2Sr_2CaCu_2O_8

    Full text link
    Quasiparticle dispersion in Bi2Sr2CaCu2O8Bi_{2}Sr_{2}CaCu_{2}O_{8} is investigated with improved angular resolution as a function of temperature and doping. Unlike the linear dispersion predicted by the band calculation, the data show a sharp break in dispersion at 50±1050\pm10 meVmeV binding energy where the velocity changes by a factor of two or more. This change provides an energy scale in the quasiparticle self-energy. This break in dispersion is evident at and away from the d-wave node line, but the magnitude of the dispersion change decreases with temperature and with increasing doping.Comment: 4 figure

    TcT_c suppression in co-doped striped cuprates

    Full text link
    We propose a model that explains the reduction of TcT_c due to the pinning of stripes by planar impurity co-doping in cuprates. A geometrical argument about the planar fraction of carriers affected by stripe pinning leads to a a linear TcT_c suppression as a function of impurity concentration zz. The critical value zcz_c for the vanishing of superconductivity is shown to scale like Tc2T_c^2 in the under-doped regime and becomes universal in the optimally- and over-doped regimes. Our theory agrees very well with the experimental data in single- and bi-layer cuprates co-doped with Zn, Li, Co, etc...Comment: 4 pages, 4 figure

    Effect of anisotropic impurity scattering in superconductors

    Full text link
    We discuss the weak-coupling BCS theory of a superconductor with the impurities, accounting for their anisotropic momentum-dependent potential. The impurity scattering process is considered in the t-matrix approximation and its influence on the superconducting critical temperature is studied in the Born and unitary limit for a d- and (d+s)-wave superconductors. We observe a significant dependence of the pair-breaking strength on the symmetry of the scattering potential and classify the impurity potentials according to their ability to alter T_c. A good agreement with the experimental data for Zn doping and oxygen irradiation in the overdoped cuprates is found.Comment: 31 pages, RevTex, 15 PostScript figure

    MUC1 Induced by Epstein-Barr Virus Latent Membrane Protein 1 Causes Dissociation of the Cell-Matrix Interaction and Cellular Invasiveness via STAT Signaling

    Get PDF
    Disruption of cellular adhesion is an essential pathobiologic step leading to tumor dissemination. Mucin 1 (MUC1) is a mucinous glycoprotein expressed at the surfaces of epithelial cells in many tissues and their carcinomas. MUC1 plays crucial roles in tumor invasion and metastasis, especially in opposing cell adhesion. We have shown that virus infection, specifically by the human tumor virus Epstein-Barr virus (EBV) induces a spectrum of cellular invasiveness and metastasis factors. Here we show that expression of MUC1 is increased in diverse latently EBV-infected cell lines that express latent membrane protein 1 (LMP1), the main viral oncoprotein, and that the level of MUC1 was suppressed by expression of a dominant-negative mutant of LMP1. Expression of LMP1 in EBV-negative nasopharyngeal cell lines induces expression of MUC1 through activation of the MUC1 promoter via binding of STAT1 and STAT3. Finally, LMP1 reduces cell adhesion ability, which is restored by inhibition of MUC1 expression with MUC1 small interfering RNA (siRNA). In addition, LMP1 increases cell invasiveness, which is suppressed by MUC1 siRNA. Thus, LMP1 induces MUC1, a factor important in an early step of detachment and release of tumor cells, which along with induction of other invasiveness and angiogenic factors may combine to act in a complex sequential process that culminates in metastasis of EBV-infected tumor cells

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed
    • …
    corecore