12 research outputs found

    Overdamped van Hove function of atomic liquids

    Full text link
    Using the generalized Langevin equation formalism and the process of contraction of the description we derive a general memory function equation for the thermal fluctuations of the local density of a simple atomic liquid. From the analysis of the long-time limit of this equation, a striking equivalence is suggested between the long-time dynamics of the atomic liquid and the dynamics of the corresponding \emph{Brownian} liquid. This dynamic equivalence is confirmed here by comparing molecular and Brownian dynamics simulations of the self-intermediate scattering function and the long-time self-diffusion coefficient for the hard-sphere liquid.Comment: 4 Figures, 23 page

    Simplified Self-Consistent Theory of Colloid Dynamics

    Full text link
    One of the main elements of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics [Phys. Rev. E {\bf 62}, 3382 (2000); ibid {\bf 72}, 031107 (2005)] is the introduction of exact short-time moment conditions in its formulation. The need to previously calculate these exact short-time properties constitutes a practical barrier for its application. In this note we report that a simplified version of this theory, in which this short-time information is eliminated, leads to the same results in the intermediate and long-time regimes. Deviations are only observed at short times, and are not qualitatively or quantitatively important. This is illustrated by comparing the two versions of the theory for representative model systems.Comment: 1 text archive, 3 figure

    Dynamic equivalence between atomic and colloidal liquids

    Full text link
    We show that the kinetic-theoretical self-diffusion coefficient of an atomic fluid plays the same role as the short-time self-diffusion coefficient D_S in a colloidal liquid, in the sense that the dynamic properties of the former, at times much longer than the mean free time, and properly scaled with D_S, will indistinguishable from those of a colloidal liquid with the same interaction potential. One important consequence of such dynamic equivalence is that the ratio D_L/ D_S of the long-time to the short-time self-diffusion coefficients must then be the same for both, an atomic and a colloidal system characterized by the same inter-particle interactions. This naturally extends to atomic fluids a well-known dynamic criterion for freezing of colloidal liquids[Phys. Rev. Lett. 70, 1557 (1993)]. We corroborate these predictions by comparing molecular and Brownian dynamics simulations on (soft- and hard-sphere) model systems, representative of what we may refer to as the "hard-sphere" dynamic universality class

    A beam-beam monitoring detector for the MPD experiment at NICA

    Full text link
    The Multi-Purpose Detector (MPD) is to be installed at the Nuclotron Ion Collider fAcility (NICA) of the Joint Institute for Nuclear Research (JINR). Its main goal is to study the phase diagram of the strongly interacting matter produced in heavy-ion collisions. These studies, while providing insight into the physics of heavy-ion collisions, are relevant for improving our understanding of the evolution of the early Universe and the formation of neutron stars. In order to extend the MPD trigger capabilities, we propose to include a high granularity beam-beam monitoring detector (BE-BE) to provide a level-0 trigger signal with an expected time resolution of 30 ps. This new detector will improve the determination of the reaction plane by the MPD experiment, a key measurement for flow studies that provides physics insight into the early stages of the reaction. In this work, we use simulated Au+Au collisions at NICA energies to show the potential of such a detector to determine the event plane resolution, providing further redundancy to the detectors originally considered for this purpose namely, the Fast Forward Detector (FFD) and the Hadron Calorimeter (HCAL). We also show our results for the time resolution studies of two prototype cells carried out at the T10 beam line at the CERN PS complex.Comment: 16 pages, 12 figures. Updated to published version with added comments and correction

    Materiales ultrablandos: diagrama de fase de una suspensión coloidal de polímeros estrella

    No full text
    La determinación experimental y predicción teórica de diagrama de fases para las sustancias es un aspecto de la mayor importancia en la ciencia de materiales. La cristalización y fusión a pesar de ser fenómenos cotidianos y de estar dentro de la agenda de estudio de la mecánica estadística desde sus inicios, aún no provee una teoría que las explique de primeros principios. La dificultad principal se debe a que estas transiciones se presentan en sistemas concentrados convirtiéndose en un problema colectivo de muchos cuerpos. Es en este contexto que la prescripción de criterios fenomenológicos que permitan la localización de las líneas de transición es altamente valorada por la comunidad científica. Motivados por ello, en esta comunicación se presentan resultados obtenidos con el criterio de Löwen, mediante simulaciones computacionales, para una suspensión coloidal de partículas ultra suaves conformada por polímeros estrella

    Presión en medios granulares en silos: experimentos para un curso de fluidos

    No full text
    Se presentan las experiencias obtenidas en el análisis del comportamiento estático de un medio granular en un silo. Haciendo uso de un dispositivo experimental construido para tal fin, se explora el comportamiento de la presión ejercida sobre el fondo de un silo cuando sobre él descansa una columna de medio granular (maíz) sobrecargado y se compara con el de un líquido. Se utiliza el modelo teórico de Janssen para describir el comportamiento de la presión, obteniendo resultados satisfactorios. Este trabajo podrá servir de base en la elaboración de protocolos de prácticas para los laboratorios de los cursos de física clásica que se imparten en los programas de licenciatura en ciencias e ingeniería

    Finite Element Analysis of the Time-Dependent Smoluchowski Equation for Acetylcholinesterase Reaction Rate Calculations

    No full text
    This article describes the numerical solution of the time-dependent Smoluchowski equation to study diffusion in biomolecular systems. Specifically, finite element methods have been developed to calculate ligand binding rate constants for large biomolecules. The resulting software has been validated and applied to the mouse acetylcholinesterase (mAChE) monomer and several tetramers. Rates for inhibitor binding to mAChE were calculated at various ionic strengths with several different time steps. Calculated rates show very good agreement with experimental and theoretical steady-state studies. Furthermore, these finite element methods require significantly fewer computational resources than existing particle-based Brownian dynamics methods and are robust for complicated geometries. The key finding of biological importance is that the rate accelerations of the monomeric and tetrameric mAChE that result from electrostatic steering are preserved under the non-steady-state conditions that are expected to occur in physiological circumstances
    corecore