780 research outputs found

    Effects of interatomic collisions on atom laser outcoupling

    Full text link
    We present a computational approach to the outcoupling in a simple one-dimensional atom laser model, the objective being to circumvent mathematical difficulties arising from the breakdown of the Born and Markov approximations. The approach relies on the discretization of the continuum representing the reservoir of output modes, which allows the treatment of arbitrary forms of outcoupling as well as the incorporation of non-linear terms in the Hamiltonian, associated with interatomic collisions. By considering a single-mode trapped condensate, we study the influence of elastic collisions between trapped and free atoms on the quasi steady-state population of the trap, as well as the energy distribution and the coherence of the outcoupled atoms.Comment: 25 pages, 11 figures, to appear in J. Phys.

    Coherent Tunneling of Atoms from Bose-condensed Gases at Finite Temperatures

    Full text link
    Tunneling of atoms between two trapped Bose-condensed gases at finite temperatures is explored using a many-body linear response tunneling formalism similar to that used in superconductors. To lowest order, the tunneling currents can be expressed quite generally in terms of the single-particle Green's functions of the isolated Bose gases. A coherent first-order tunneling Josephson current between two atomic Bose-condensates is found, in addition to coherent and dissipative contributions from second-order condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is a generalization of Meier and Zwerger, who recently treated tunneling between uniform atomic Bose gases. We apply our formalism to the analysis of an out-coupling experiment induced by light wave fields, using a simple Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For tunneling into the vacuum, we recover the results of Japha, Choi, Burnett and Band, who recently pointed out the usefulness of studying the spectrum of out-coupled atoms. In particular, we show that the small tunneling current of noncondensate atoms from a trapped Bose gas has a broad spectrum of energies, with a characteristic structure associated with the Bogoliubov quasiparticle u^2 and v^2 amplitudes.Comment: 26 pages, 5 figures, minor changes, to appear in PR

    Theory of output coupling for trapped fermionic atoms

    Full text link
    We develop a dynamic theory of output coupling, for fermionic atoms initially confined in a magnetic trap. We consider an exactly soluble one-dimensional model, with a spatially localized delta-type coupling between the atoms in the trap and a continuum of free-particle external modes. Two important special cases are considered for the confinement potential: the infinite box and the harmonic oscillator. We establish that in both cases a bound state of the coupled system appears for any value of the coupling constant, implying that the trap population does not vanish in the infinite-time limit. For weak coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding to the initially occupied energy levels in the trap; the height of these peaks increases with the energy. As the coupling gets stronger, the energy spectrum is displaced towards dressed energies of the fermions in the trap. The corresponding dressed states result from the coupling between the unperturbed fermionic states in the trap, mediated by the coupling between these states and the continuum. In the strong-coupling limit, there is a reinforcement of the lowest-energy dressed mode, which contributes to the energy spectrum of the outgoing beam more strongly than the other modes. This effect is especially pronounced for the one-dimensional box, which indicates that the efficiency of the mode-reinforcement mechanism depends on the steepness of the confinement potential. In this case, a quasi-monochromatic anti-bunched atomic beam is obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral distribution and corresponding figur

    Albumin Administration in Acute Ischemic Stroke: Safety Analysis of the ALIAS Part 2 Multicenter Trial

    Get PDF
    BACKGROUND: Albumin treatment of ischemic stroke was associated with cardiopulmonary adverse events in previous studies and a low incidence of intracranial hemorrhage. We sought to describe the neurological and cardiopulmonary adverse events in the ALIAS Part 2 Multicenter Trial. METHODS: Ischemic stroke patients, aged 18-83 and a baseline NIHSS ≥ 6, were randomized to treatment with ALB or saline control within 5 hours of stroke onset. Neurological adverse events included symptomatic intracranial hemorrhage, hemicraniectomy, neurological deterioration and neurological death. Cardiopulmonary adverse events included pulmonary edema/congestive heart failure, acute coronary syndromes, atrial fibrillation, pneumonia and pulmonary thromboembolism. RESULTS: Among 830 patients, neurological and cardiopulmonary adverse events were not differentially associated with poor outcome between ALB and saline control subjects. The rate of symptomatic intracranial hemorrhage in the first 24h was low overall (2.9%, 24/830) but more common in the ALB treated subjects (RR = 2.4, CI95 1.01-5.8). The rate of pulmonary edema/CHF in the first 48h was 7.9% (59/830) and was more common among ALB treated subjects (RR = 10.7, CI95 4.3-26.6); this complication was expected and was satisfactorily managed with mandated diuretic administration and intravenous fluid guidelines. Troponin elevations in the first 48h were common, occurring without ECG change or cardiac symptoms in 52 subjects (12.5%). CONCLUSIONS: ALB therapy was associated with an increase in symptomatic ICH and pulmonary edema/congestive heart failure but this did not affect final outcomes. Troponin elevation occurs routinely in the first 48 hours after acute ischemic stroke. TRIAL REGISTRATION: ClincalTrials.gov NCT00235495

    Boojums and the Shapes of Domains in Monolayer Films

    Full text link
    Domains in Langmuir monolayers support a texture that is the two-dimensional version of the feature known as a boojum. Such a texture has a quantifiable effect on the shape of the domain with which it is associated. The most noticeable consequence is a cusp-like feature on the domain boundary. We report the results of an experimental and theoretical investigation of the shape of a domain in a Langmuir monolayer. A further aspect of the investigation is the study of the shape of a ``bubble'' of gas-like phase in such a monolayer. This structure supports a texture having the form of an inverse boojum. The distortion of a bubble resulting from this texture is also studied. The correspondence between theory and experiment, while not perfect, indicates that a qualitative understanding of the relationship between textures and domain shapes has been achieved.Comment: replaced with published version, 10 pages, 13 figures include

    Quasi-continuous atom laser in the presence of gravity

    Get PDF
    We analyse the extraction of a coherent atomic beam from a trapped Bose-Einstein condensate using a rf transition to a non-trapping state at T=0 K. Our quantum treatment fully takes gravity into account but neglects all interactions in the free falling beam. We obtain an analytical expression of the output rate and of the wave function of the extracted beam, i.e. the output mode of the ``atom laser''. Our model reproduces satisfactorily experimental data without any adjustable parameter.Comment: 4 pages, 2 figure

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure

    Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention

    Get PDF
    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint

    Proving termination and memory safety for programs with Pointer Arithmetic

    Get PDF
    Proving termination automatically for programs with explicit pointer arithmetic is still an open problem. To close this gap, we introduce a novel abstract domain that can track allocated memory in detail. We use it to automatically construct a symbolic execution graph that represents all possible runs of the program and that can be used to prove memory safety. This graph is then transformed into an integer transition system, whose termination can be proved by standard techniques. We implemented this approach in the automated termination prover AProVE and demonstrate its capability of analyzing C programs with pointer arithmetic that existing tools cannot handle
    • …
    corecore