1,828 research outputs found

    Determination of the Sign of g factors for Conduction Electrons Using Time-resolved Kerr Rotation

    Get PDF
    The knowledge of electron g factor is essential for spin manipulation in the field of spintronics and quantum computing. While there exist technical difficulties in determining the sign of g factor in semiconductors by the established magneto-optical spectroscopic methods. We develop a time resolved Kerr rotation technique to precisely measure the sign and the amplitude of electron g factor in semiconductors

    Speculation and Volatility Spillover in the Crude Oil and Agricultural Commodity Markets: A Bayesian Analysis

    Get PDF
    This paper assesses the roles of various factors influencing the volatility of crude oil prices and the possible linkage between this volatility and agricultural commodity markets. Stochastic volatility models are applied to weekly crude oil, corn and wheat futures prices from November 1998 to January 2009. Model parameters are estimated using Bayesian Markov chain Monte Carlo methods. The main results are as follows. Speculation, scalping, and petroleum inventories are found to be important in explaining oil price variation. Several properties of crude oil price dynamics are established including mean-reversion, a negative correlation between price and volatility, volatility clustering, and infrequent compound Poisson jumps. We find evidence of volatility spillover among crude oil, corn and wheat markets after the fall of 2006. This could be largely explained by tightened interdependence between these markets induced by ethanol production.Gibbs sampling, Merton jump, leverage effect, stochastic volatility, Demand and Price Analysis, Financial Economics, Resource /Energy Economics and Policy, G13, Q4,

    Fast initialization of the spin state of an electron in a quantum dot in the Voigt configuration

    Full text link
    We consider the initialization of the spin-state of a single electron trapped in a self-assembled quantum dot via optical pumping of a trion level. We show that with a magnetic field applied perpendicular to the growth direction of the dot, a near-unity fidelity can be obtained in a time equal to a few times the inverse of the spin-conserving trion relaxation rate. This method is several orders-of-magnitude faster than with the field aligned parallel, since this configuration must rely on a slow hole spin-flip mechanism. This increase in speed does result in a limit on the maximum obtainable fidelity, but we show that for InAs dots, the error is very small.Comment: 4 pages, 4 figure

    Optimal phase space projection for noise reduction

    Get PDF
    In this communication we will re-examine the widely studied technique of phase space projection. By imposing a time domain constraint (TDC) on the residual noise, we deduce a more general version of the optimal projector, which includes those appearing in previous literature as subcases but does not assume the independence between the clean signal and the noise. As an application, we will apply this technique for noise reduction. Numerical results show that our algorithm has succeeded in augmenting the signal-to-noise ratio (SNR) for simulated data from the R\"ossler system and experimental speech record.Comment: Accepted version for PR

    Loss Enhanced Transmission and Collimation in Anisotropic Epsilon-Near-Zero Metamaterials

    Get PDF
    We verify the extraordinary transmission enhancement and collimation induced by the material loss in anisotropic epsilon-near-zero metamaterials, and reveal the physical mechanism of this exotic electromagnetic phenomenon via the iso-frequency contour analysis. In addition, we demonstrate the possibility in realization of such loss enhanced transmission of Gaussian beam in realistic silver-germanium multilayered structures by applying full-wave numerical simulations

    Fast spin rotations by optically controlled geometric phases in a quantum dot

    Full text link
    We demonstrate optical control of the geometric phase acquired by one of the spin states of an electron confined in a charge-tunable InAs quantum dot via cyclic 2pi excitations of an optical transition in the dot. In the presence of a constant in-plane magnetic field, these optically induced geometric phases result in the effective rotation of the spin about the magnetic field axis and manifest as phase shifts in the spin quantum beat signal generated by two time-delayed circularly polarized optical pulses. The geometric phases generated in this manner more generally perform the role of a spin phase gate, proving potentially useful for quantum information applications.Comment: 4 pages, 3 figures, resubmitted to Physical Review Letter
    corecore