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Abstract: This paper assesses the roles of various factors influencing the volatility of 

crude oil prices and the possible linkage between this volatility and agricultural 

commodity markets. Stochastic volatility models are applied to weekly crude oil, corn 

and wheat futures prices from November 1998 to January 2009. Model parameters are 

estimated using Bayesian Markov chain Monte Carlo methods. The main results are as 

follows. Speculation, scalping, and petroleum inventories are found to be important in 

explaining oil price variation. Several properties of crude oil price dynamics are 

established including mean-reversion, a negative correlation between price and volatility, 

volatility clustering, and infrequent compound Poisson jumps. We find evidence of 

volatility spillover among crude oil, corn and wheat markets after the fall of 2006. This 

could be largely explained by tightened interdependence between these markets induced 

by ethanol production.  

 

JEL Classification: G13; Q4. 
Keywords: Gibbs sampling, Merton jump, leverage effect, stochastic volatility. 

 
 
1. Introduction 

Crude oil prices exhibited exceptional volatility through much of 2008. After setting a 

record high of over $147 per barrel in July, the benchmark price of the West Texas 

Intermediate (WTI) crude oil fell to just over $40 per barrel in early December. Oil price 

shocks and their transmission through various channels impact the U.S. and global 

economy significantly (Kilian 2008). In various studies seeking to explain this sharp 

price increase, speculation was found to play an important role. Hamilton (2008) 

concludes that a low demand price elasticity, strong demand growth, and stagnant global 

production induced upward pressure on crude oil prices and triggered commodity 

speculation from 2006 to 2008. Caballero, Farhi, and Gourinchas (2008) also link the oil 

price surge to large speculative capital flows that moved into the U.S. oil market.       

      Agricultural commodity prices have displayed similar behavior. Chicago cash corn 

prices rose over $3/bushel to reach $7.2/bushel in July 2008. They then fell to 
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$3.6/bushel in December 2008. Volatile agricultural commodity prices have been, and 

continue to be a cause for concern among governments, traders, producers and consumers. 

When an increasing portion of corn used as feedstock in the production of alternative 

energy sources (e.g. ethanol), crude oil prices may have contributed to the increase in 

prices of agricultural crop by not only rising input costs but also boosting demand. Given 

the relatively fixed number of acres that can be allocated for crop production it is likely 

that shocks to the corn market may spillover into other crops and ultimately into food 

prices. Thus the interdependency between energy and agricultural commodity markets 

warrants further investigation. 

      In this study, we attempt to investigate the role of speculation in driving crude oil 

price variation after controlling other influencing factors. We also attempt to quantify the 

extent to which volatility in the crude oil market transmits into agricultural commodity 

markets, especially the corn and wheat markets. We hypothesize that the linkage between 

these markets has tightened and that volatility has spilled over from crude oil to corn and 

wheat as large scale of corn ethanol production has impacted agricultural commodity 

price formation. 

     A considerable body of researches has been devoted to investigate the price volatility 

in the crude oil market. For example, Sadorsky (2006) evaluates various statistical 

models in forecasting volatility of crude oil futures prices. Cheong (2009) investigates 

and compares time-varying volatility of the Europe Brent and the WTI markets, and finds 

volatility persistence in both markets and a significant leverage effect in the European 

Brent market. Kaufmann and Ullman (2009) explore role of speculation in the crude oil 

futures market. While there are a number of papers on volatility transmission in financial 

and/or energy markets (e.g., Hamao, Masulis, and Ng 1990; Ewing, Malik, and Ozfidan 

2002; Baele 2005), specific studies on volatility transmission between crude oil and 

agricultural markets is sparse. Babula and Somwaru (1992) investigate the dynamic 

impacts of oil price shocks on prices of petroleum-based inputs such as agricultural 

chemical and fertilizer. The effect of oil price shock on the U.S. agricultural employment 

is investigated in Uri (1996). 

      For the purpose of modeling conditional heteroskedasticity, ARCH/GARCH models, 

originally introduced by Engle (1982), and stochastic volatility (SV) models proposed by 
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Taylor (1994) are the two main approaches that are used in the literature. While 

ARCH/GARCH models define volatility as a deterministic function of past return 

innovations, volatility is assumed to vary through its own stochastic process in SV 

models. ARCH-type models are relatively easy to estimate and remain popular (see Engle 

2002 for a recent survey). SV models are directly connected to diffusion processes and 

thus allow for a volatility process that does not depend on observable variables. SV 

models provide greater flexibility in describing stylized facts about returns and 

volatilities, but are relatively difficult to estimate (Shephard 2005).  Much progress has 

been achieved on the estimation of SV models using Bayesian MCMC techniques, and 

this appears to yield relatively good results (e.g., Chib, Nardari and Shephard, 2002; 

Jacquier, Polson, and Rossi, 2004; Li, Wells, and Yu 2008).  

      Oil price dynamics are characterized by random variation, high volatility, and jumps 

(Askari and Krichene 2008), which may possibly be induced by demand uncertainty and 

a sluggish energy production system (Wirl 2008). Incorporating the leverage effect; a 

negative correlation between price and volatility, is found to provide superior forecasting 

results for crude oil price changes (Morana 2001). To fully capture the stylized facts of 

oil price dynamics, we adopt a stochastic volatility with Merton jump in return (SVMJ) 

model. In the model, the instantaneous volatility is described by a mean-reverting square-

root process, while the jump component is assumed to follow a compound Poisson 

process with constant jump intensity, and the jump size that follow a normal distribution.  

      The applied SVMJ model belongs to the class of affine jump-diffusions models 

(Duffie, Pan, and Singleton 2000), which is tractable and capable to capture salient 

features of price and volatility in an economical fashion. It has the advantage of ensuring 

that the volatility process can never be negative or reach zero in finite time and providing 

close-form solutions for pricing a wide range of equity and derivatives. The Bayesian 

MCMC method that we employ in this study is particularly suitable for dealing with this 

type of model. Based on a conditional simulation strategy, MCMC method avoids 

marginalizing high dimensional latent variables including instantaneous volatility and 

jumps to obtain parameter estimates. MCMC also affords special techniques to overcome 

the difficulty of drawing from complex posterior distributions with unknown functional 

forms which can significantly complicate likelihood-based inferences. 
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       To the best of our knowledge our study is the first to apply an SVMJ model to crude 

oil prices and to empirically examine crude oil price and volatility dynamics in a model 

that allows for mean-reversion, the leverage effect, and infrequent jumps.  

      Our results suggest that volatility peaks are found to be associated with significant 

political and economic events. The explanatory variables we use have the hypothesized 

signs and can explain a large portion of the price variation. Scalping and speculation are 

shown to have had a significantly positive impact on price volatility. Petroleum 

inventories are found to reduce oil price variation. We find evidence of volatility 

spillover among crude oil, corn and wheat markets after the fall of 2006, which is 

consistent with the large scale production of ethanol. 

      A methodological innovation of our approach is that we introduce a Bayesian 

estimation method capable of accommodating parameters of the underlying dynamic 

process and additional explanatory variables in the volatility formulation. The 

coefficients of the endogenized variables are estimated using a weighted least square 

(WLS) method given MCMC draws of other model parameters and latent realizations. 

The WLS method performs well in our generated data experiment and provides an 

adequate fit to the real data.   

      The outline of this paper is as follows. In the following section we describe the model 

and the associated Bayesian posterior simulators for the stochastic volatility models. 

Section 3 describes our data, while Section 4 presents the empirical results. Concluding 

remarks are presented in Section 5. 

2. The Model  

2.1 The Univariate SVMJ model 

Let tP  be the crude oil futures prices and  ty  denote the logarithm of prices, i.e., 

logt ty P= . The dynamics of ty  are characterized by the SVMJ model as the following: 

1 1

1 1 1

,  

( ) .

y y y y y
t t t t t t t t

v
t t t t v t t

y y v J J N

v v v Z v

µ ε ξ

κ θ β σ ε
+ +

+ + +

= + + + =

= + − + +
       (1) 
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where both 1
y

tε +  and 1
v
tε +  are assumed to follow (0,1)N  with correlation 

1 1corr( , )y v
t tε ε ρ+ + = , which measures the correlation between returns and instantaneous 

volatility, this is the leverage effect. The instantaneous volatility of returns, tv , is 

stochastic and assumed to follow the mean-reverting square-root process developed by 

Heston (1993). While y
tJ  represents a jump in returns, the jump time y

tN  is assumed to 

follow a ( )Poisson tλ  with the probability ( 1)y
t yP N λ= =  and the jump size y

tξ  follows 

the distribution of 2( , )y yN µ σ , both of which are independent of 1
y

tε +  and 1
v
tε + .  

      The symbol µ  measures the mean return, θ  is the long-run mean of the stochastic 

volatility, κ  is the speed of mean reversion of volatility, while vσ  represents the 

volatility of volatility variable. 1 2( , ,..., ) 't t t ntZ Z Z Z=  is a 1n ×  vector of n  explanatory 

variables at time t , whose effects on volatility are represented by β . For this process, we 

have observations 1
1( )T

t ty +
=  and 1

1( )T
t tZ +

= , latent volatility variables 1
1( )T

t tv +
= , a jump time 

1( )y T
t tN =  and size 1( )y T

t tξ = . Model parameters are { , , , , , , , , }v y y yµ κ θ β σ ρ λ µ σΘ = .  

2.1.1  Bayesian Inference 

Conditioning on the latent variables, tv  and y
tJ , 1t ty y+ −  and 1t tv v+ −  follow a bivariate 

normal distribution: 

1
2

1 1

1
| , ~ , .

( )

y
t t vy t

t t t
t t v vt t

y y J
v J N v

v v v Z
ρσµ

ρσ σκ θ β
+

+ +

 −  +   
     − − +      

                                    (2) 

So the joint distribution of the returns, 1
1{ }T

t tY y +
== , the volatility, 1

1{ }t
t tV v +

== , the jumps, 

1{ }y T
t tJ J == , and the parameters Θ  is: 

( )

1

1
2 2

1 1 1 122
0

2 11

2
0 0

( , , | )  ( , | ) ( | ) ( )

1 1                        ex p ( ) 2 ( )
2(1 )1

( )1                             exp
2

y
t

T
y y v v

t t t t
t v t

y TT
t y J

y
t ty y

p V J Y p Y V J p J p

v
ε ρε ε ε

ρσ ρ

ξ µ
λ

σ σ
+

−

+ + + +
=

−−

= =

Θ ∝ Θ Θ

 
∝ − − + −−  

 −
× − ×  

 

∏

∏ 

11(1 ) ( )
y
tJ

y pλ +−− × Θ

    (3) 
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where 1 1( ) /y
t t t t ty y J vε µ+ += − − −  and ( )1 1 1( ) / ( )v

t t t t t v tv v v Z vε κ θ β σ+ + += − − − − .  

      Following the literature, we employ the following convenient conjugate and proper 

priors: ~ (0,1)Nµ , (0, )~ (0,1)TNκ ∞ , (0, )~ (0,1)TNθ ∞ , ~ (0,100)y Nµ , 2 ~ (5,1 / 20)y IGσ , 

and ~ (2,40)y betaλ , where 2
( , ) ( , )a bTN µ σ  denotes a normal distribution with mean µ  

and variance 2σ  truncated to the interval ( , )a b , and IG  and beta  represent the inverse 

gamma and beta distribution, respectively. Similar to Jacquire, Polson, and Rossi (1994), 

( , )vρ σ  are re-parameterized as ( , )v vφ ω , where v vφ σ ρ=  and 2 2(1 )v vω σ ρ= − . The 

priors of the new parameters are chosen as | ~ (0,1 / 2 )v v vNφ ω ω  and ~ (2,200)v IGω .  

2.1.2 The Gibbs sampler 

The complete model is given by the equation (3) together with the prior distribution 

assumptions. The model is fitted using recent advances in MCMC techniques, namely, 

the Gibbs sampler. Given the conditionally conjugate priors, the posterior simulation is 

straightforward and proceeds in the following steps. 

 Step 1. |  ~  ( / ,1 / )N S W Wµ ⋅  

where  
1

2 2
0

1 1 1
1

T

t t

W
v Mρ

−

=

 
= + −  

∑ , 
1

2 2
0

1 1
1

T
t

t
t t v

D mS C
v M

ρ
ρ σ

−

=

 
= − + −  

∑ ,       

1
y y

t t t t tC y y N ξ+= − − , and 1 1( )t t t t tD v v v Zκ θ β+ += − − − − . m and M  are the 

hyperparameters for the prior of the corresponding parameter (the same hereafter). 

Step 2. |  ~ ( / ,1 / )y N S W Wµ ⋅  

where 2
y

TW
σ

= , 

1

0
2 2

T
y

t
t

y

mS
M

ξ

σ

−

== +
∑

.  

Step 3.  2
1

2

0

1|  ~ ,
2 1 / 2 ( ) 1 /

y T
y

t y
t

TIG m
M

σ
ξ µ

−

=

 
 
 ⋅ +
 − + 
 

∑
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Step 4.  
1 1

0 0

|  ~ ,
T T

y y
y t t

t t
beta N m T N Mλ

− −

= =

 ⋅ + − + 
 
∑ ∑  

Step 5.  (0, )|  ~ ( / ,1 / )TN S W Wθ ∞⋅  

where 
2 1

2 2 2
0

1 1
(1 )

T

tv t

W
v M

κ
σ ρ

−

=

= +
− ∑ ,  

1

2 2
0

1 /
(1 )

T
t v t

tv t t

D C mS
v v M

κ σ ρ
ρ σ

−

=

 −
= + −  

∑ , 

1
y y

t t t t tC y y N ξ+= − − , and 1 1( 1)t t t tD v v Zκ β+ += + − − . 

Step 6.  (0, )|  ~ ( / ,1 / )TN S W Wκ ∞⋅  

where  
2 21

2 2 2
0

( ) 1
(1 )

T
t

tv t

vW
v M

κ θ
σ ρ

−

=

−
= +

− ∑ , 

1

2 2
0

( )( / )
(1 )

T
t t v t

tv t

v D C mS
v M

κ θ σ ρ
ρ σ

−

=

 − −
= + −  

∑ , 1
y y

t t t t tC y y N ξ+= − − , and 

1 1t t t tD v v Z β+ += − − . 

Step 7.  1
2 2

0

1|  ~ ,
2 1 / 2 1 / / 2

v T

t
t

TIG m
D M S W

ω −

=

 
 
 ⋅ +
 + − 
 

∑
 and |  ~ ( / , / )v v vN S W Wφ ω ω  

where 
1

2

0

2
T

t
t

W C
−

=

= +∑ , 
1

0

T

t t
t

S C D
−

=

= ∑ ,  1( ) /y y
t t t t t tC y y N vξ+= − − , and 

1 1( ( ) ) /t t t t t tD v v v Z vκ θ β+ += − − − − .  

Step 8.  1 |  ~ ( / ,1 / )y
t N S W Wξ + ⋅  

where 
2

2

( )
(1 )

y
t

t

NW
vρ

=
−

, ( )
1

2 2
0

/
(1 )

y T
yt

t t t
tv y

NS C D v
µ

ρ
ρ σ σ

−

=

= − +
− ∑  , 1t t tC y y µ+= − − , and 

1 1( )t t t t tD v v v Zκ θ β+ += − − − − . 

Step 9.  1
1

1 2

|  ~y
tN Bernoulli α

α α+

 
⋅  + 
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where 2
1 1 12

1exp 2
2(1 ) yA A Bα ρ λ

ρ
 

 = − −  − 
, 

2
2 2 22

1exp 2 (1 )
2(1 ) yA A Bα ρ λ

ρ
 

 = − − −  − 
 , 1 1( ) /y

t t t tA y y vµ ξ+= − − − , 

2 1( ) /t t tA y y vµ+= − − , and 1 1( ( ) ) / ( )t t t t v tB v v v Z vκ θ β σ+ += − − − − . 

Step 10.  The posterior distribution of 1tv +  is time-varying as follows: 

For 1 1t T< + < ,  

2 2
1 1 1 2 2 2 2

1 2 2
1

2 ( ) 2 ( )1( | )  exp exp
2(1 ) 2(1 )

y v v y y v v
t t t t t t t

t
t

p v
v

ρς ς ς ς ρς ς ς
ρ ρ

+ + + + + + +
+

+

      − + − +      ⋅ ∝ − × × −   − −      
, 

where  1 1 1( ) /y y y
t t t t t t tC y y N vς ξ+ + −= = − − , 1 1 1( ( ) ) / ( )v

t t t t t v tv v v Z vς κ θ β σ+ + += − − − − . 

For 1 1t + = ,  

2
2 2 2 2

1 2
1

2 ( )1( | )  exp
2(1 )

y y v v

p v
v

ς ρς ς ς
ρ

  − +  ⋅ ∝ × − −  
. 

For 1 1t T+ = + , 

2
1 1 1

1 2
1

2 ( ) 1( | )  exp
2(1 )

y v v
T T T

T
T

p v
v

ρς ς ς
ρ

+ + +
+

+

  − +  ⋅ ∝ − × −  
.  

      It’s difficult to sample from this posterior distribution of  1tv +  because it is time-

varying and in complicated forms. We employ the random walk Metropolis-Hasting 

algorithms (Gelman et al. 2007) to update the latent volatility variables.  

Step 11. Estimation method for β  

      After obtaining simulated draws of the latent variables and other model parameters, 

we estimate β  using weighted least square (WLS) method: 

1ˆ ( ' ) 'W W W Gβ −=           (4) 
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where  1
21 )

t

v t

ZW
vσ ρ

+=
−

, 
2(1 )

t v t

v t

D CG
v

ρσ
σ ρ

−
=

−
, 1

y y
t t t t tC y y Nµ ξ+= − − − , and 

1 ( )t t t tD v v vκ θ+= − − − .  

2.2 The Bivariate SV model 

To investigate possible volatility spillover between crude oil and agricultural commody 

markets, we model three pairs of log return of commodity prices in the bivariate SV 

framework, crude oil/corn, corn/wheat, and crude oil/wheat. We refer the first commodity 

in the pair as commodity 1, the second commodity 2. That is to say that crude oil or corn 

is commodity 1 in each pair, while corn or wheat is commodity 2. We denote the 

observed log-returns of futures prices at time t  by 1 2( , ) 't t tD D D=  for 1,...,t T= , i.e., 

, , 1log log log ,  1,2it i i t i tD P P P i−= ∆ = − = . Let 1 2( , ) 't t tε ε ε= , 1 2( , ) 'µ µ µ= , and 

1 2( , ) 't t tV V V= . The bivariate stochastic volatility model with possible volatility spill-over 

from one market to the other is specified as  

1

,   ~ (0, ),

( ) ,   ~ (0, ).

iid

t t t t
iid

t t t t

D N

V V N

ε

η

ε ε

µ µ η η+

= Ω Σ

= +Φ − + Σ
      (5) 

where 1

2

exp( ) / 2 0
0 exp( ) / 2

t
t

t

v
v

 
Ω =  

 
, 

1
1
ε

ε
ε

ρ
ρ
 

Σ =  
 

. While ηΣ  describes the returns 

dependence by the constant correlation coefficient ερ , the volatility spill-over effect is 

captured by 11

21 22

0φ
φ φ
 

Φ =  
 

.  We constrain 12φ  to equal zero to exclude the possibility of 

unrealistic volatility transmission from the market of commodity 1 to the commodity 

market 2. As 21φ  is different from zero, the cross dependence of volatilities are realized 

via volatility transmission from the commodity 1 to the commodity 2’s market. The 

matrix ηΣ  defines the variation of individual volatility process as 1

2

2

2

0

0
η

η

σ

σ

 
 
 
 

. The 
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estimation of the bivariate SV model (5) is implemented in Bayesian inference using 

Gibbs Sampling (WinBUGS) following the lines of Yu and Meyer (2008).  

3. Data 

Our empirical analysis makes use of weekly average settlement prices of crude oil futures 

contracts traded on New York Mercantile Exchange (NYMEX) from November 16, 1998 

and January 26, 2009. Similarly, the corn and wheat prices are the weekly average 

settlement prices of futures contracts traded in the Chicago Board of Trade (CBOT) over 

the same period. The futures prices are taken from the corresponding nearest futures 

contracts, which are the contracts closest to their expiration. Figure 1 presents the 

logarithm of crude oil prices and the log returns over the sample period. 

       To investigate the influencing forces for oil price volatility, the SVMJ model in eqn. 

(1) relates price volatility to a set of explanatory economic variables tZ . Each of the 

included variables, its hypothesized relationship with oil price variability, and the related 

data sources are discussed in detail as follows. 

3.1 Scalping  

Scalping refers to activities that open and close contract positions within a very short 

period of time so as to realize small profits. It typically reflects market liquidity. Focusing 

on taking profits based on small price changes, scalpers may allow prices to adjust to 

information more quickly and assumedly increase price variability. A standard measure 

of scalping activity in futures markets is the ratio of volume to open interest. We 

construct the proxy for scalping activities in crude oil futures market using weekly 

average trading volume and open interest of nearest futures contracts in the NYMEX 

market.  

3.2 Crude oil inventory 

The volatility of a commodity price tends to be inversely related to the level of stocks. A 

significant negative relationship between crude oil inventory and price volatility has been 

documented in Geman and Ohana (2009). Total U.S crude oil and petroleum products 

stocks (excluding the Strategic Petroleum Reserve) were downloaded from the EIA 

website. 
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3.3 Speculation index 

The speculation index is intended to measure the intensity of speculation relative to short 

hedging.. For traders in the futures market who hold positions in futures at or above 

specific reporting levels, the U.S. Commodity Futures Trading Commission (CFTC) 

classifies their futures positions as either “commercial” or “noncommercial”. By 

definition, commercial positions in a commodity are held for hedging purposes, while 

noncommercial positions mainly represent speculative activity in pursuit of financial 

profits. So the speculation index is constructed as the ratio of noncommercial positions to 

total positions in futures contracts using the following: 

 
1   if ;

1   if .

SS HS HL
HS HL

SL HS HL
HS HL

 + > +

 + <
 +

 

where ( )SS SL  represents speculative short (long) positions in the crude oil futures 

market, while ( )HS HL  represents short (long) hedged positions. These weekly position 

numbers are obtained from Historical Commitments of Traders Reports (CFTC 1998-

2009). All independent variables tZ  are centralized by subtracting the means.  

      To facilitate the analysis of volatility spill-over between crude oil and corn markets, 

we apply the algorithm, which is proposed in Bai (1997) and implemented in Zeileis et al. 

(2002), to test for possible structural change of corn and wheat prices over the sample 

period. The test results presented in figures 2 and 3 indicate that while the pattern of corn 

futures prices changed in the week of Oct. 23, 2006, the wheat prices has structure 

change in the same period, the week of Oct. 30, 2006. The change points are represented 

by the vertical lines in the figures. The timing of structure change is consistent with the 

finding in the literature (e.g., Irwin and Good 2009). For comparison, we thus split the 

sample to two subsamples and estimate eqn. (5) repeatedly to estimate for possible 

volatility spillover among crude oil, corn and wheat markets.   

4. Empirical Results 
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First, we coded the Gibbs sampler of the univariate SVMJ model introduced in Section 2 

in Matlab and ran it for 50,000 iterations on generated data. The generated data 

experiment was done to test the reliability of the estimation algorithm. Inspection of the 

draw sequences satisfied us that the sampler had converged by iteration 20,000. The 

results indicate that our algorithm can recover the parameters of the data generating 

process sufficiently. Then we run the estimation for 50 times with 30,000 iterations each 

time on the collected data described in Section 3. For each run, we discard the first 

20,000 runs as a “burn-in” and use the last 10,000 iterations in MCMC simulations to 

estimate the model parameters. Specifically, we take the mean of the posterior 

distribution as a parameter estimate and the standard deviation of the posterior as the 

standard error.  

      The estimated volatility over the sample period is plotted in figure 4. From an 

examination of figure 3, it is clear that there exists volatility clustering, i.e., when 

volatility is high, it is likely to remain high, and when it is low, it is likely to remain low. 

Also, it can be seen that volatility peaked around March 2003, the time of the Iraq 

invasion. The other period with high price variation is December 2008, that is coincident 

with the recent oil price surge and following financial crisis. 

       The posterior estimates of the SVMJ models reported in table 1 indicate: 

(1) Mean-reversion in the behavior of volatility: the speed of mean reversion (κ ) is 0.49 

with the long-run mean return 0.0056*52=0.29;  

(2) A negative leverage effect; the negative correlation between instantaneous volatility 

and prices, 0.1187ρ = − ;  

(3) Infrequent compound Poisson jumps: the estimate of λ  suggests on average 

0.0035*52=0.182 jumps per year.  

     All the explanatory variables included in the time-varying volatility have the 

hypothesized sign. The posterior standard deviations associated with these coefficients 

are quite small relative to their means. While scalping activity increases the crude oil 

price volatility, petroleum inventory negatively affects the price variability. More 

importantly, speculation in the crude oil futures market is found to increase up oil price 

variation in a significant manner. 
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      We ran Winbugs codes for the bivariate SV model for 30,000 iterations with the first 

20,000 iteration discarded as burn-in. The estimation results for volatility spillover 

between crude oil and corn markets are presented in table 2, while table 3 shows those for 

oil/wheat and corn/wheat markets. The spillover effects are not significantly different 

from zero in the first subsample period, November 1998 - October 2006. In the second 

subsample period, October 2006 – January 2009, the estimate of 21 0.13φ =  in table 2 

indicates a significant volatility spillover from crude oil market to corn market. This 

result supports the hypothesis that higher crude oil prices led to forecasts of a large corn 

ethanol impact on corn prices which in turn impacted corn price formation. The 

estimation result of  21 0.16φ =  for the model of corn and wheat markets indicates that a 

significant portion of the price variation in the wheat market in this time period was a 

result of price variation in the corn market which in turn were due to price variation in the 

crude oil market. These results make sense when one considers that corn and wheat 

compete for acres in some states. 

      The correlation coefficient between crude oil and corn markets in table 2 increases 

from 0.13 to 0.33 in the second period, while that for crude and wheat markets increases 

from 0.09 to 0.28, as presented in table 3. These results indicate a much tighter linkage 

between crude oil and agriculture commodity markets in the second period.  

5. Conclusion 

In this study, we show that various economic factors including scalping, speculation, and 

petroleum inventories explain crude oil price volatility. After endogenizing these 

economic factors, the model with both diffusive stochastic volatility and Merton jumps in 

returns adequately approximates the characteristics of recent oil price dynamics. The 

Bayesian MCMC method is shown to be capable of providing an accurate joint 

identification of the model parameters. Recent oil price shocks appear to have triggered 

sharp price changes in agricultural commodity markets, especially the corn and wheat 

market, potentially because of the tighter interconnection between these food/feed and 

energy markets in the past three years.  
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             Table 1. SVMJ model parameter posterior mean and standard deviations 

Variable Mean Std. dev. 
µ  0.0056 0.0001 

yµ  0.1256 6.8448 

yσ  2.1821 0.0630 

yλ  0.0035 0.0001 

θ  0.0106 0.0001 

κ  0.4900 0.0092 

vσ  0.0576 0.0004 

ρ  -0.1187 0.0050 

1β  0.0031 0.0002 

2β  -0.0034 0.0004 

3β  0.0029 0.0003 
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Table 2. Bivariate (Oil/Corn) SV model estimation results 

Variable 11/1998 - 10/2006 10/2006 – 01/2009 

Mean Std. Dev. Mean Std. Dev. 

1µ  -5.94 0.22 -5.94 0.35 

2µ  -8.42 0.22 -7.60 0.25 

1φ  0.96 0.002 0.98 0.02 

2φ  0.86 0.05 0.79 0.11 

21φ  -0.049 0.06 0.13 0.09 

ρ  0.13 0.05 0.33 0.09 

1σ  0.19 0.03 0.17 0.04 

2σ  0.50 0.08 0.14 0.06 
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                     Table 3. Bivariate (Oil/Wheat and Corn/Wheat) SV model estimation results 

 Oil and Wheat Markets Corn and Wheat Markets 

Variable 11/1998-10/2006 10/2006-01/2009 11/1998-10/2006 10/2006-01/2009 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

1µ  -6.12 0.14 -5.99 0.45 -6.89 0.18 -6.08 0.29 

2µ  -6.39 0.23 -5.89 0.28 -6.55 0.17 -6.08 0.35 

1φ  0.90 0.06 0.98 0.02 0.88 0.04 0.91 0.09 

2φ  0.94 0.04 0.85 0.11 0.91 0.09 0.86 0.12 

21φ  -0.07 0.05 0.04 0.05 0.04 0.05 0.16 0.17 

ρ  0.09 0.05 0.28 0.09 0.63 0.03 0.60 0.06 

1σ  0.20 0.05 0.19 0.05 0.36 0.07 0.16 0.07 

2σ  0.12 0.04 0.13 0.05 0.12 0.03 0.12 0.04 
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          Figure 1. The log and log-return of crude oil prices (11/1998-01/2009). 

 



 22 

 

 
 

             Figure 2. Structure change test of corn futures prices (11/1998-01/2009). 
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             Figure 3. Structure change test of wheat futures prices (11/1998-01/2009). 
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       Figure 4. Estimated volatility of crude oil futures prices (11/1998-01/2009). 
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