10,940 research outputs found

    Characteristics of Precession Electron Diffraction Intensities from Dynamical Simulations

    Full text link
    Precession Electron Diffraction (PED) offers a number of advantages for crystal structure analysis and solving unknown structures using electron diffraction. The current article uses many-beam simulations of PED intensities, in combination with model structures, to arrive at a better understanding of how PED differs from standard unprecessed electron diffraction. It is shown that precession reduces the chaotic oscillatory behavior of electron diffraction intensities as a function of thickness. An additional characteristic of PED which is revealed by simulations is reduced sensitivity to structure factor phases. This is shown to be a general feature of dynami-cal intensities collected under conditions in which patterns with multiple incident beam orienta-tions are averaged together. A new and significantly faster method is demonstrated for dynami-cal calculations of PED intensities, based on using information contained in off-central columns of the scattering matrix.Comment: 20 pages, 7 Figure

    Space station mobile transporter

    Get PDF
    The first quarter of the next century will see an operational space station that will provide a permanently manned base for satellite servicing, multiple strategic scientific and commercial payload deployment, and Orbital Maneuvering Vehicle/Orbital Transfer Vehicle (OMV/OTV) retrieval replenishment and deployment. The space station, as conceived, is constructed in orbit and will be maintained in orbit. The construction, servicing, maintenance and deployment tasks, when coupled with the size of the station, dictate that some form of transportation and manipulation device be conceived. The Transporter described will work in conjunction with the Orbiter and an Assembly Work Platform (AWP) to construct the Work Station. The Transporter will also work in conjunction with the Mobile Remote Servicer to service and install payloads, retrieve, service and deploy satellites, and service and maintain the station itself. The Transporter involved in station construction when mounted on the AWP and later supporting a maintenance or inspection task with the Mobile Remote Servicer and the Flight Telerobotic Servicer is shown

    Study and production of polybenzimidazole billets, laminates, and cylinders

    Get PDF
    Mechanical properties and physical, chemical, and thermal tests of polybenzimidazole and carbon fabric laminates for spacecraft thermal insulatio

    SERS active colloidal nanoparticles for the detection of small blood biomarkers using aptamers

    Get PDF
    Functionalized colloidal nanoparticles for SERS serve as a promising multifunctional assay component for blood biomarker detection. Proper design of these nanoprobes through conjugation to spectral tags, protective polymers, and sensing ligands can provide experimental control over the sensitivity, range, reproducibility, particle stability, and integration with biorecognition assays. Additionally, the optical properties and degree of electromagnetic SERS signal enhancement can be altered and monitored through tuning the nanoparticle shape, size, material and the colloid's local surface plasmon resonance (LSPR). Aptamers, synthetic affinity ligands derived from nucleic acids, provide a number of advantages for biorecognition of small molecules and toxins with low immunogenicity. DNA aptamers are simpler and more economical to produce at large scale, are capable of greater specificity and affinity than antibodies, are easily tailored to specific functional groups, can be used to tune inter-particle distance and shift the LSPR, and their intrinsic negative charge can be utilized for additional particle stability.1,2 Herein, a "turn-off" competitive binding assay platform involving two different plasmonic nanoparticles for the detection of the toxin bisphenol A (BPA) using SERS is presented. A derivative of the toxin is immobilized onto a silver coated magnetic nanoparticle (Ag@MNP), and a second solid silver nanoparticle (AgNP) is functionalized with the BPA aptamer and a Raman reporter molecule (RRM). The capture (Ag@MNP) and probe (AgNP) particles are mixed and the aptamer binding interaction draws the nanoparticles closer together, forming an assembly that results in an increased SERS signal intensity. This aptamer mediated assembly of the two nanoparticles results in a 100x enhancement of the SERS signal intensity from the RRM. These pre-bound aptamer/nanoparticle conjugates were then exposed to BPA in free solution and the competitive binding event was monitored by the decrease in SERS intensity

    Amperometric and spectrophotometric determination of carbaryl in natural waters and commercial formulations

    Get PDF
    The work presented describes the development and evaluation of two flow-injection analysis (FIA) systems for the automated determination of carbaryl in spiked natural waters and commercial formulations. Samples are injected directly into the system where they are subjected to alkaline hydrolysis thus forming 1-naphthol. This product is readily oxidised at a glassy carbon electrode. The electrochemical behaviour of 1-naphthol allows the development of an FIA system with an amperometric detector in which 1-naphthol determination, and thus measurement of carbaryl concentration, can be performed. Linear response over the range 1.0×10–7 to 1.0×10–5 mol L–1, with a sampling rate of 80 samples h–1, was recorded. The detection limit was 1.0×10–8 mol L–1. Another FIA manifold was constructed but this used a colorimetric detector. The methodology was based on the coupling of 1-naphthol with phenylhydrazine hydrochloride to produce a red complex which has maximum absorbance at 495 nm. The response was linear from 1.0×10–5 to 1.5×10–3 mol L–1 with a detection limit of 1.0×10–6 mol L–1. Sample-throughput was about 60 samples h–1. Validation of the results provided by the two FIA methodologies was performed by comparing them with results from a standard HPLC–UV technique. The relative deviation was <5%. Recovery trials were also carried out and the values obtained ranged from 97.0 to 102.0% for both methods. The repeatability (RSD, %) of 12 consecutive injections of one sample was 0.8% and 1.6% for the amperometric and colorimetric systems, respectively

    Aptamer conjugated silver nanoparticles for the detection of interleukin 6

    Get PDF
    The controlled assembly of plasmonic nanoparticles by a molecular binding event has emerged as a simple yet sensitive methodology for protein detection. Metallic nanoparticles (NPs) coated with functionalized aptamers can be utilized as biosensors by monitoring changes in particle optical properties, such as the LSPR shift and enhancement of the SERS spectra, in the presence of a target protein. Herein we test this method using two modified aptamers selected for the protein biomarker interleukin 6, an indicator of the dengue fever virus and other diseases including certain types of cancers, diabetes, and even arthritis. IL6 works by inducing an immunological response within the body that can be either anti-inflammatory or pro-inflammatory. The results show that the average hydrodynamic diameter of the NPs as measured by Dynamic Light Scattering was ∼42 nm. After conjugation of the aptamers, the peak absorbance of the AgNPs shifted from 404 to 408 nm indicating a surface modification of the NPs due to the presence of the aptamer. Lastly, preliminary results were obtained showing an increase in SERS intensity occurs when the IL-6 protein was introduced to the conjugate solution but the assay will still need to be optimized in order for it to be able to monitor varying concentration changes within and across the desired range

    Ab-initio theory of NMR chemical shifts in solids and liquids

    Full text link
    We present a theory for the ab-initio computation of NMR chemical shifts (sigma) in condensed matter systems, using periodic boundary conditions. Our approach can be applied to periodic systems such as crystals, surfaces, or polymers and, with a super-cell technique, to non-periodic systems such as amorphous materials, liquids, or solids with defects. We have computed the hydrogen sigma for a set of free molecules, for an ionic crystal, LiH, and for a H-bonded crystal, HF, using density functional theory in the local density approximation. The results are in excellent agreement with experimental data.Comment: to appear in Physical Review Letter

    Vegetation and Topographic Control of Wind-blown Snow Distributions in Distributed and Aggregated Simulations for an Arctic Tundra Basin

    Get PDF
    In the Pacific Northwest (PNW), concern about the impacts of climate and land cover change on water resources and flood-generating processes emphasizes the need for a mechanistic understanding of the interactions between forest canopies and hydrologic processes. Detailed measurements during the 1999 and 2000 hydrologic years were used to modify the Simultaneous Heat and Water (SHAW) model for application in forested systems. Major changes to the model include improved representation of rainfall interception and stomatal conductance dynamics. The model was developed for the 1999 hydrologic year and tested for the 2000 hydrologic year without modification of the site parameters. The model effectively simulated throughfall, soil water content profiles, and shallow soil temperatures for both years. The largest discrepancies between soil moisture and temperature were observed during periods of discontinuous snow cover due to spatial variability that was not explicitly simulated by the model. Soil warming at bare locations was delayed until most of the snow cover ablated because of the large heat sink associated with the residual snow patches. During the summer, simulated transpiration decreased from a maximum monthly mean of 2.2 mm day⁻¹ in July to 1.3 mm day⁻¹ in September as a result of decreasing soil moisture and declining net radiation. The results indicate that a relatively simple representation of the vegetation canopy can accurately simulate seasonal hydrologic fluxes in this environment, except during periods of discontinuous snow cover
    corecore