351 research outputs found

    Reintroduction of confiscated and displaced mammals risks outbreeding and introgression in natural populations, as evidenced by orang-utans of divergent subspecies

    No full text
    Confiscated and displaced mammals are often taken to sanctuaries, where the explicit goal may be reintroduction to the wild. By inadvertently collecting animals from different source populations, however, such efforts risk reintroducing individuals that have not been in genetic contact for significant periods of time. Using genetic analyses and 44 years of data from Camp Leakey, an orang-utan rehabilitation site on Borneo, we determined the minimum extent to which orang-utans representing non-native, geographically and reproductively isolated taxa were reintroduced into the surrounding wild population. We found two reintroduced females were from a non-native subspecies, and have since produced at least 22 hybridized and introgressed descendants to date, of which at least 15 are living. Given that Bornean orang-utan subspecies are thought to have diverged from a common ancestor around 176,000 years ago, with marked differentiation over the last 80,000 years, we highlight the need for further evaluation of the effects of hybridizing orang-utans of different taxa — particularly in light of the ~1500 displaced orang-utans awaiting urgent reintroduction. As endangered mammals are increasing in number in sanctuaries worldwide, we stress the need for re-examination of historical reintroductions, to assess the extent and effects of de facto translocations in the past

    Postweaning maternal care increases male chimpanzee reproductive success

    No full text
    International audienceHumans are unusual among animals for continuing to provision and care for their offspring until adulthood. This "prolonged dependency" is considered key for the evolution of other notable human traits, such as large brains, complex societies, and extended postreproductive lifespans. Prolonged dependency must therefore have evolved under conditions in which reproductive success is gained with parental investment and diminished with early parental loss. We tested this idea using data from wild chimpanzees, which have similarly extended immature years as humans and prolonged mother-offspring associations. Males who lost their mothers after weaning but before maturity began reproducing later and had lower average reproductive success. Thus, persistent motherimmature son associations seem vital for enhancing male reproductive success, although mothers barely provision sons after weaning. We posit that these associations lead to social gains, crucial for successful reproduction in complex social societies, and offer insights into the evolution of prolonged dependency

    Mountain gorillas maintain strong affiliative biases for maternal siblings despite high male reproductive skew and extensive exposure to paternal kin

    Get PDF
    Evolutionary theories predict that sibling relationships will reflect a complex balance of cooperative and competitive dynamics. In most mammals, dispersal and death patterns mean that sibling relationships occur in a relatively narrow window during development and/or only with same-sex individuals. Besides humans, one notable exception is mountain gorillas, in which non-sex-biased dispersal, relatively stable group composition, and the long reproductive tenures of alpha males mean that animals routinely reside with both maternally and paternally related siblings, of the same and opposite sex, throughout their lives. Using nearly 40,000 hr of behavioral data collected over 14 years on 699 sibling and 1235 non-sibling pairs of wild mountain gorillas, we demonstrate that individuals have strong affiliative preferences for full and maternal siblings over paternal siblings or unrelated animals, consistent with an inability to discriminate paternal kin. Intriguingly, however, aggression data imply the opposite. Aggression rates were statistically indistinguishable among all types of dyads except one: in mixed-sex dyads, non-siblings engaged in substantially more aggression than siblings of any type. This pattern suggests mountain gorillas may be capable of distinguishing paternal kin but nonetheless choose not to affiliate with them over non-kin. We observe a preference for maternal kin in a species with a high reproductive skew (i.e. high relatedness certainty), even though low reproductive skew (i.e. low relatedness certainty) is believed to underlie such biases in other non-human primates. Our results call into question reasons for strong maternal kin biases when paternal kin are identifiable, familiar, and similarly likely to be long-term groupmates, and they may also suggest behavioral mismatches at play during a transitional period in mountain gorilla society

    Fine-scale genetic structure analyses suggest further male than female dispersal in mountain gorillas

    Get PDF
    BACKGROUND: Molecular studies in social mammals rarely compare the inferences gained from genetic analyses with field information, especially in the context of dispersal. In this study, we used genetic data to elucidate sex-specific dispersal dynamics in the Virunga Massif mountain gorilla population (Gorilla beringei beringei), a primate species characterized by routine male and female dispersal from stable mixed-sex social groups. Specifically, we conducted spatial genetic structure analyses for each sex and linked our genetically-based observations with some key demographic and behavioural data from this population. RESULTS: To investigate the spatial genetic structure of mountain gorillas, we analysed the genotypes of 193 mature individuals at 11 microsatellite loci by means of isolation-by-distance and spatial autocorrelation analyses. Although not all males and females disperse, female gorillas displayed an isolation-by-distance pattern among groups and a signal of dispersal at short distances from their natal group based on spatial autocorrelation analyses. In contrast, male genotypes were not correlated with spatial distance, thus suggesting a larger mean dispersal distance for males as compared to females. Both within sex and mixed-sex pairs were on average genetically more related within groups than among groups. CONCLUSIONS: Our study provides evidence for an intersexual difference in dispersal distance in the mountain gorilla. Overall, it stresses the importance of investigating spatial genetic structure patterns on a sex-specific basis to better understand the dispersal dynamics of the species under investigation. It is currently poorly understood why some male and female gorillas disperse while others remain in the natal group. Our results on average relatedness within and across groups confirm that groups often contain close relatives. While inbreeding avoidance may play a role in driving female dispersal, we note that more detailed dyadic genetic analyses are needed to shed light on the role of inbreeding avoidance as an ultimate cause of female dispersal in mountain gorillas

    Inferring the evolutionary histories of divergences in Hylobates and Nomascus gibbons through multilocus sequence data

    Get PDF
    BACKGROUND: Gibbons (Hylobatidae) are the most diverse group of living apes. They exist as geographically-contiguous species which diverged more rapidly than did their close relatives, the great apes (Hominidae). Of the four extant gibbon genera, the evolutionary histories of two polyspecific genera, Hylobates and Nomascus, have been the particular focus of research but the DNA sequence data used was largely derived from the maternally inherited mitochondrial DNA (mtDNA) locus. RESULTS: To investigate the evolutionary relationships and divergence processes of gibbon species, particularly those of the Hylobates genus, we produced and analyzed a total of 11.5 kb DNA of sequence at 14 biparentally inherited autosomal loci. We find that on average gibbon genera have a high average sequence diversity but a lower degree of genetic differentiation as compared to great ape genera. Our multilocus species tree features H. pileatus in a basal position and a grouping of the four Sundaic island species (H. agilis, H. klossii, H. moloch and H. muelleri). We conducted pairwise comparisons based on an isolation-with-migration (IM) model and detect signals of asymmetric gene flow between H. lar and H. moloch, between H. agilis and H. muelleri, and between N. leucogenys and N. siki. CONCLUSIONS: Our multilocus analyses provide inferences of gibbon evolutionary histories complementary to those based on single gene data. The results of IM analyses suggest that the divergence processes of gibbons may be accompanied by gene flow. Future studies using analyses of multi-population model with samples of known provenance for Hylobates and Nomascus species would expand the understanding of histories of gene flow during divergences for these two gibbon genera

    Long-term inference of population size and habitat use in a socially dynamic population of wild western lowland gorillas

    No full text
    Genetic estimation of population sizes has been critical for monitoring cryptic and rare species; however, population estimates do not inherently reveal the permanence or stability of the population under study. Thus, it is important to monitor not only the number of individuals in a population, but also how they are associated in groups and how those groups are distributed across the landscape. Adding to the challenge of obtaining such information with high precision for endangered and elusive species is the need for long-term collection of such data. In this study we compare sampling approaches and genotype non-invasive genetic samples to estimate the number and distribution of wild western lowland gorillas occupying a ˘005Ctextasciitildeþinspace100 km2 area in Loango National Park, Gabon, for the periods 2005–2007 and 2014–2017. Based on the number of genotyped individuals we inferred a minimum of 83 gorillas during the first and 81 gorillas during the second study period. We also obtained similar capture–recapture population size estimates for the two periods despite variance in social dynamics like group formations, group dissolutions and individual dispersal. We furthermore found area fidelity for two groups that were sampled for 10–12 years, despite variation in group membership. Our results revealed how individual movements link groups in a `network' and show that western lowland gorilla populations can show a high degree of temporal and geographic stability concurrent with substantial social dynamics
    • …
    corecore